共 46 条
Short-term wind power prediction based on ICEEMDAN decomposition and BiTCN-BiGRU-multi-head self-attention model
被引:1
作者:

Zhang, Xu
论文数: 0 引用数: 0
h-index: 0
机构:
China Univ Min & Technol Beijing, Beijing 100083, Peoples R China China Univ Min & Technol Beijing, Beijing 100083, Peoples R China

Ye, Jun
论文数: 0 引用数: 0
h-index: 0
机构:
China Univ Min & Technol Beijing, Beijing 100083, Peoples R China China Univ Min & Technol Beijing, Beijing 100083, Peoples R China

Gao, Lintao
论文数: 0 引用数: 0
h-index: 0
机构:
China Univ Min & Technol Beijing, Beijing 100083, Peoples R China China Univ Min & Technol Beijing, Beijing 100083, Peoples R China

Ma, Shenbing
论文数: 0 引用数: 0
h-index: 0
机构:
China Univ Min & Technol Beijing, Beijing 100083, Peoples R China China Univ Min & Technol Beijing, Beijing 100083, Peoples R China

Xie, Qiman
论文数: 0 引用数: 0
h-index: 0
机构:
China Univ Min & Technol Beijing, Beijing 100083, Peoples R China China Univ Min & Technol Beijing, Beijing 100083, Peoples R China

Huang, Hui
论文数: 0 引用数: 0
h-index: 0
机构:
China Univ Min & Technol Beijing, Beijing 100083, Peoples R China China Univ Min & Technol Beijing, Beijing 100083, Peoples R China
机构:
[1] China Univ Min & Technol Beijing, Beijing 100083, Peoples R China
基金:
中国国家自然科学基金;
关键词:
Renewable energy;
Wind power prediction;
Deep learning model;
Bidirectional learning;
Attention mechanism;
SPEED;
D O I:
10.1007/s00202-024-02638-8
中图分类号:
TM [电工技术];
TN [电子技术、通信技术];
学科分类号:
0808 ;
0809 ;
摘要:
In order to address the security threats posed by the volatility and stochasticity of large-scale distributed wind power, this paper proposes an attention-based hybrid deep learning approach for more efficient and accurate wind power sequence prediction. Firstly, the Pearson correlation coefficient (PCC) is used to identify the main meteorological variables as input sequences. Secondly, the intrinsic complete ensemble empirical mode decomposition with adaptive noise is used to decompose the sequence of wind power. Then, the hidden information such as wind speed, wind direction, and wind magnitude are extracted by bidirectional temporal convolutional networks (BiTCN), and the acquired information is inputted into bidirectional gated recurrent units (BiGRU) optimized by a multi-head self-attention mechanism for prediction. Finally, the predicted values of each component are summed to obtain the final prediction results. By comparing with the other 12 models, the results show that the two-scale integrated model of BiTCN and BiGRU can obtain better prediction accuracy. Compared with other benchmark models, the RMSE of this paper's model is reduced by more than 9.4%, indicating that this paper's model can fit the wind power data better and achieve better prediction results.
引用
收藏
页码:2645 / 2662
页数:18
相关论文
共 46 条
- [1] A new intelligent method based on combination of VMD and ELM for short term wind power forecasting[J]. NEUROCOMPUTING, 2016, 203 : 111 - 120论文数: 引用数: h-index:机构:
- [2] Short-term wind speed predicting framework based on EEMD-GA-LSTM method under large scaled wind history[J]. ENERGY CONVERSION AND MANAGEMENT, 2021, 227Chen, Yaoran论文数: 0 引用数: 0 h-index: 0机构: Shanghai Jiao Tong Univ, Sch Naval Architecture Ocean & Civil Engn, Shanghai 200240, Peoples R China Shanghai Jiao Tong Univ, Sch Naval Architecture Ocean & Civil Engn, Shanghai 200240, Peoples R ChinaDong, Zhikun论文数: 0 引用数: 0 h-index: 0机构: Shanghai Jiao Tong Univ, Sch Naval Architecture Ocean & Civil Engn, Shanghai 200240, Peoples R China Shanghai Jiao Tong Univ, Sch Naval Architecture Ocean & Civil Engn, Shanghai 200240, Peoples R ChinaWang, Yan论文数: 0 引用数: 0 h-index: 0机构: Shanghai Jiao Tong Univ, Sch Naval Architecture Ocean & Civil Engn, Shanghai 200240, Peoples R China Shanghai Jiao Tong Univ, Sch Naval Architecture Ocean & Civil Engn, Shanghai 200240, Peoples R ChinaSu, Jie论文数: 0 引用数: 0 h-index: 0机构: Shanghai Jiao Tong Univ, Sch Naval Architecture Ocean & Civil Engn, Shanghai 200240, Peoples R China Shanghai Jiao Tong Univ, Sch Naval Architecture Ocean & Civil Engn, Shanghai 200240, Peoples R ChinaHan, Zhaolong论文数: 0 引用数: 0 h-index: 0机构: Shanghai Jiao Tong Univ, Sch Naval Architecture Ocean & Civil Engn, Shanghai 200240, Peoples R China Shanghai Jiao Tong Univ, State Key Lab Ocean Engn, Shanghai 200240, Peoples R China Shanghai Jiao Tong Univ, Minist Educ, Key Lab Hydrodynam, Shanghai 200240, Peoples R China Shanghai Jiao Tong Univ, Shanghai Key Lab Digital Maintenance Bldg & Infra, Shanghai 200240, Peoples R China Shanghai Jiao Tong Univ, Sch Naval Architecture Ocean & Civil Engn, Shanghai 200240, Peoples R ChinaZhou, Dai论文数: 0 引用数: 0 h-index: 0机构: Shanghai Jiao Tong Univ, Sch Naval Architecture Ocean & Civil Engn, Shanghai 200240, Peoples R China Shanghai Jiao Tong Univ, State Key Lab Ocean Engn, Shanghai 200240, Peoples R China Shanghai Jiao Tong Univ, Minist Educ, Key Lab Hydrodynam, Shanghai 200240, Peoples R China Shanghai Jiao Tong Univ, Shanghai Key Lab Digital Maintenance Bldg & Infra, Shanghai 200240, Peoples R China Shanghai Jiao Tong Univ, Sch Naval Architecture Ocean & Civil Engn, Shanghai 200240, Peoples R ChinaZhang, Kai论文数: 0 引用数: 0 h-index: 0机构: Rutgers State Univ, Dept Mech & Aerosp Engn, Piscataway, NJ 08854 USA Shanghai Jiao Tong Univ, Sch Naval Architecture Ocean & Civil Engn, Shanghai 200240, Peoples R ChinaZhao, Yongsheng论文数: 0 引用数: 0 h-index: 0机构: Shanghai Jiao Tong Univ, Sch Naval Architecture Ocean & Civil Engn, Shanghai 200240, Peoples R China Shanghai Jiao Tong Univ, State Key Lab Ocean Engn, Shanghai 200240, Peoples R China Shanghai Jiao Tong Univ, Sch Naval Architecture Ocean & Civil Engn, Shanghai 200240, Peoples R ChinaBao, Yan论文数: 0 引用数: 0 h-index: 0机构: Shanghai Jiao Tong Univ, Sch Naval Architecture Ocean & Civil Engn, Shanghai 200240, Peoples R China Shanghai Jiao Tong Univ, State Key Lab Ocean Engn, Shanghai 200240, Peoples R China Shanghai Jiao Tong Univ, Minist Educ, Key Lab Hydrodynam, Shanghai 200240, Peoples R China Shanghai Jiao Tong Univ, Shanghai Key Lab Digital Maintenance Bldg & Infra, Shanghai 200240, Peoples R China Shanghai Jiao Tong Univ, Sch Naval Architecture Ocean & Civil Engn, Shanghai 200240, Peoples R China
- [3] Improved complete ensemble EMD: A suitable tool for biomedical signal processing[J]. BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2014, 14 : 19 - 29Colominas, Marcelo A.论文数: 0 引用数: 0 h-index: 0机构: Univ Nacl Entre Rios, Lab Senales & Dinam Lineales, Oro Verde, Entre Rios, Argentina Consejo Nacl Invest Cient & Tecn, Buenos Aires, DF, Argentina Univ Nacl Entre Rios, Lab Senales & Dinam Lineales, Oro Verde, Entre Rios, ArgentinaSchlotthauer, Gaston论文数: 0 引用数: 0 h-index: 0机构: Univ Nacl Entre Rios, Lab Senales & Dinam Lineales, Oro Verde, Entre Rios, Argentina Consejo Nacl Invest Cient & Tecn, Buenos Aires, DF, Argentina Univ Nacl Entre Rios, Lab Senales & Dinam Lineales, Oro Verde, Entre Rios, ArgentinaTorres, Maria E.论文数: 0 引用数: 0 h-index: 0机构: Univ Nacl Entre Rios, Lab Senales & Dinam Lineales, Oro Verde, Entre Rios, Argentina Consejo Nacl Invest Cient & Tecn, Buenos Aires, DF, Argentina Univ Nacl Entre Rios, Lab Senales & Dinam Lineales, Oro Verde, Entre Rios, Argentina
- [4] Spatio-Temporal Asymmetry of Local Wind Fields and Its Impact on Short-Term Wind Forecasting[J]. IEEE TRANSACTIONS ON SUSTAINABLE ENERGY, 2018, 9 (03) : 1437 - 1447Ezzat, Ahmed Aziz论文数: 0 引用数: 0 h-index: 0机构: Texas A&M Univ, Dept Ind & Syst Engn, College Stn, TX 77840 USA Texas A&M Univ, Dept Ind & Syst Engn, College Stn, TX 77840 USAJun, Mikyoung论文数: 0 引用数: 0 h-index: 0机构: Texas A&M Univ, Dept Stat, College Stn, TX 77840 USA Texas A&M Univ, Dept Ind & Syst Engn, College Stn, TX 77840 USADing, Yu论文数: 0 引用数: 0 h-index: 0机构: Texas A&M Univ, Dept Ind & Syst Engn, College Stn, TX 77840 USA Texas A&M Univ, Dept Ind & Syst Engn, College Stn, TX 77840 USA
- [5] A compositive architecture coupling outlier correction, EWT, nonlinear Volterra multi-model fusion with multi-objective optimization for short-term wind speed forecasting[J]. APPLIED ENERGY, 2022, 307Fang, Ping论文数: 0 引用数: 0 h-index: 0机构: China Three Gorges Univ, Coll Elect Engn & New Energy, Yichang 443002, Hubei, Peoples R China China Three Gorges Univ, Coll Elect Engn & New Energy, Yichang 443002, Hubei, Peoples R ChinaFu, Wenlong论文数: 0 引用数: 0 h-index: 0机构: China Three Gorges Univ, Coll Elect Engn & New Energy, Yichang 443002, Hubei, Peoples R China China Three Gorges Univ, Hubei Prov Key Lab Operat & Control Cascaded Hydr, Yichang 443002, Hubei, Peoples R China China Three Gorges Univ, Coll Elect Engn & New Energy, Yichang 443002, Hubei, Peoples R ChinaWang, Kai论文数: 0 引用数: 0 h-index: 0机构: China Three Gorges Univ, Coll Elect Engn & New Energy, Yichang 443002, Hubei, Peoples R China China Three Gorges Univ, Coll Elect Engn & New Energy, Yichang 443002, Hubei, Peoples R ChinaXiong, Dongzhen论文数: 0 引用数: 0 h-index: 0机构: China Three Gorges Univ, Coll Elect Engn & New Energy, Yichang 443002, Hubei, Peoples R China China Three Gorges Univ, Coll Elect Engn & New Energy, Yichang 443002, Hubei, Peoples R ChinaZhang, Kai论文数: 0 引用数: 0 h-index: 0机构: China Three Gorges Univ, Coll Elect Engn & New Energy, Yichang 443002, Hubei, Peoples R China China Three Gorges Univ, Coll Elect Engn & New Energy, Yichang 443002, Hubei, Peoples R China
- [6] The ultra-short term power prediction of wind farm considering operational condition of wind turbines[J]. INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2016, 41 (35) : 15733 - 15739Fang, Ruiming论文数: 0 引用数: 0 h-index: 0机构: Huaqiao Univ, Sch Informat Sci & Engn, Xiamen 361021, Peoples R China Huaqiao Univ, Sch Informat Sci & Engn, Xiamen 361021, Peoples R ChinaWang, Yandong论文数: 0 引用数: 0 h-index: 0机构: Huaqiao Univ, Sch Informat Sci & Engn, Xiamen 361021, Peoples R China Huaqiao Univ, Sch Informat Sci & Engn, Xiamen 361021, Peoples R ChinaShang, Rongyan论文数: 0 引用数: 0 h-index: 0机构: Huaqiao Univ, Sch Informat Sci & Engn, Xiamen 361021, Peoples R China Huaqiao Univ, Sch Informat Sci & Engn, Xiamen 361021, Peoples R ChinaLiang, Yin论文数: 0 引用数: 0 h-index: 0机构: Huaqiao Univ, Sch Informat Sci & Engn, Xiamen 361021, Peoples R China Huaqiao Univ, Sch Informat Sci & Engn, Xiamen 361021, Peoples R ChinaWang, Li论文数: 0 引用数: 0 h-index: 0机构: Huaqiao Univ, Sch Informat Sci & Engn, Xiamen 361021, Peoples R China Huaqiao Univ, Sch Informat Sci & Engn, Xiamen 361021, Peoples R ChinaPeng, Chongqing论文数: 0 引用数: 0 h-index: 0机构: Huaqiao Univ, Sch Informat Sci & Engn, Xiamen 361021, Peoples R China Huaqiao Univ, Sch Informat Sci & Engn, Xiamen 361021, Peoples R China
- [7] A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting[J]. APPLIED ENERGY, 2022, 312Han, Yan论文数: 0 引用数: 0 h-index: 0机构: Changsha Univ Sci & Technol, Sch Civil Engn, Changsha 410083, Peoples R China Changsha Univ Sci & Technol, Sch Civil Engn, Changsha 410083, Peoples R ChinaMi, Lihua论文数: 0 引用数: 0 h-index: 0机构: Changsha Univ Sci & Technol, Sch Civil Engn, Changsha 410083, Peoples R China Changsha Univ Sci & Technol, Sch Civil Engn, Changsha 410083, Peoples R ChinaShen, Lian论文数: 0 引用数: 0 h-index: 0机构: Changsha Univ, Sch Civil Engn, Changsha 410083, Peoples R China Changsha Univ Sci & Technol, Sch Civil Engn, Changsha 410083, Peoples R ChinaCai, C. S.论文数: 0 引用数: 0 h-index: 0机构: Southeast Univ, Sch Transportat, Dept Bridge Engn, Nanjing 211189, Peoples R China Changsha Univ Sci & Technol, Sch Civil Engn, Changsha 410083, Peoples R ChinaLiu, Yuchen论文数: 0 引用数: 0 h-index: 0机构: Changsha Univ Sci & Technol, Sch Civil Engn, Changsha 410083, Peoples R China Changsha Univ Sci & Technol, Sch Civil Engn, Changsha 410083, Peoples R ChinaLi, Kai论文数: 0 引用数: 0 h-index: 0机构: Changsha Univ Sci & Technol, Sch Civil Engn, Changsha 410083, Peoples R China Changsha Univ Sci & Technol, Sch Civil Engn, Changsha 410083, Peoples R ChinaXu, Guoji论文数: 0 引用数: 0 h-index: 0机构: Southwest Jiaotong Univ, Dept Bridge Engn, Chengdu 610065, Peoples R China Changsha Univ Sci & Technol, Sch Civil Engn, Changsha 410083, Peoples R China
- [8] Short-term wind power prediction based on EEMD-LASSO-QRNN model[J]. APPLIED SOFT COMPUTING, 2021, 105 (105)He, Yaoyao论文数: 0 引用数: 0 h-index: 0机构: Hefei Univ Technol, Sch Management, Hefei 230009, Peoples R China Hefei Univ Technol, Minist Educ, Key Lab Proc Optimizat & Intelligent Decis Making, Hefei 230009, Peoples R China Hefei Univ Technol, Sch Management, Hefei 230009, Peoples R ChinaWang, Yun论文数: 0 引用数: 0 h-index: 0机构: Hefei Univ Technol, Sch Management, Hefei 230009, Peoples R China Hefei Univ Technol, Minist Educ, Key Lab Proc Optimizat & Intelligent Decis Making, Hefei 230009, Peoples R China Hefei Univ Technol, Sch Management, Hefei 230009, Peoples R China
- [9] Improved near surface wind speed predictions using Gaussian process regression combined with numerical weather predictions and observed meteorological data[J]. RENEWABLE ENERGY, 2018, 126 : 1043 - 1054Hoolohan, Victoria论文数: 0 引用数: 0 h-index: 0机构: Univ Leeds, Doctoral Training Ctr Low Carbon Technol, Leeds LS2 9JT, W Yorkshire, England Univ Leeds, Sch Chem & Proc Engn, Leeds LS2 9JT, W Yorkshire, England Univ Leeds, Doctoral Training Ctr Low Carbon Technol, Leeds LS2 9JT, W Yorkshire, EnglandTomlin, Alison S.论文数: 0 引用数: 0 h-index: 0机构: Univ Leeds, Sch Chem & Proc Engn, Leeds LS2 9JT, W Yorkshire, England Univ Leeds, Doctoral Training Ctr Low Carbon Technol, Leeds LS2 9JT, W Yorkshire, EnglandCockerill, Timothy论文数: 0 引用数: 0 h-index: 0机构: Ctr Integrated Energy Res, Leeds LS2 9JT, W Yorkshire, England Univ Leeds, Doctoral Training Ctr Low Carbon Technol, Leeds LS2 9JT, W Yorkshire, England
- [10] Multistep short-term wind power forecasting model based on secondary decomposition, the kernel principal component analysis, an enhanced arithmetic optimization algorithm, and error correction[J]. ENERGY, 2024, 286Hou, Guolian论文数: 0 引用数: 0 h-index: 0机构: North China Elect Power Univ, Sch Control & Comp Engn, Beijing 102206, Peoples R China North China Elect Power Univ, Sch Control & Comp Engn, Beijing 102206, Peoples R ChinaWang, Junjie论文数: 0 引用数: 0 h-index: 0机构: North China Elect Power Univ, Sch Control & Comp Engn, Beijing 102206, Peoples R China North China Elect Power Univ, Sch Control & Comp Engn, Beijing 102206, Peoples R ChinaFan, Yuzhen论文数: 0 引用数: 0 h-index: 0机构: North China Elect Power Univ, Sch Control & Comp Engn, Beijing 102206, Peoples R China North China Elect Power Univ, Sch Control & Comp Engn, Beijing 102206, Peoples R China