Direct Precursor Route for the Fabrication of LLZO Composite Cathodes for Solid-State Batteries

被引:1
作者
Kiyek, Vivien [1 ,2 ]
Schwab, Christian [1 ]
Scheld, Walter Sebastian [1 ]
Roitzheim, Christoph [1 ]
Lindner, Adrian [3 ]
Menesklou, Wolfgang [3 ]
Finsterbusch, Martin [1 ,4 ]
Fattakhova-Rohlfing, Dina [1 ,4 ,5 ,6 ]
Guillon, Olivier [1 ,2 ,4 ,7 ]
机构
[1] Forschungszentrum Julich, Inst Energy Mat & Devices Mat Synth & Proc IMD 2, D-52425 Julich, Germany
[2] Rhein Westfal TH Aachen, Inst Mineral Engn, D-52064 Aachen, Germany
[3] Karlsruhe Inst Technol KIT, Inst Appl Mat Electrochem Technol IAM ET, D-76131 Karlsruhe, Germany
[4] Helmholtz Inst Munster Ion Energy Storage IEK 12, D-48149 Munster, Germany
[5] Univ Duisburg Essen, Fac Engn, D-47057 Duisburg, Germany
[6] Univ Duisburg Essen, Ctr Nanointegrat Duisburg Essen, D-47057 Duisburg, Germany
[7] Julich Aachen Res Alliance JARA ENERGY, D-52425 Julich, Germany
关键词
all-solid-state batteries; ceramic composites; in situ synthesis; LLZO; LITHIUM-ION BATTERY; SUBSTITUTED LI7LA3ZR2O12; INTERFACE MODIFICATION; LICOO2; ELECTROLYTE; RAMAN; PERFORMANCE; CONDUCTION;
D O I
10.1002/advs.202404682
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Solid-state batteries based on Li7La3Zr2O12 (LLZO) garnet electrolyte are a robust and safe alternative to conventional lithium-ion batteries. However, the large-scale implementation of ceramic composite cathodes is still challenging due to a complex multistep manufacturing process. A new one-step route for the direct synthesis of LLZO during the manufacturing of LLZO/LiCoO2 (LCO) composite cathodes based on cheap precursors and utilizing the industrially established tape casting process is presented. It is shown that Al, Ta:LLZO can be formed directly in the presence of LCO from metal oxide precursors (LiOH, La2O3, ZrO2, Al2O3, and Ta2O5) by heating to 1050 degrees C, eliminating the time- and energy-consuming synthesis of preformed LLZO powders. In addition, performance-optimized gradient microstructures can be produced by sequential casting of slurries with different compositions, resulting in dense and flat phase-pure cathodes without unwanted ion interdiffusion or secondary phase formation. Freestanding cathodes with a thickness of 85 mu m, a relative density of 95%, and an industrial relevant LCO loading of 15 mg show an initial capacity of 82 mAh g-1 (63% of the theoretical capacity of LCO) in a solid-state cell with Li metal anodes, which is comparable to conventional LCO/LLZO cathodes and can be further improved in the future. Free-standing solid-state cathodes of Li7La3Zr2O12 (LLZO) solid electrolyte and LiCoO2 (LCO) are formed in a one-step process based on cheap precursors and utilizing the industrially established tape casting process. LLZO can be formed directly in the presence of LCO from metal oxide precursors by heating to 1050 degrees C, eliminating the time- and energy-consuming synthesis of preformed LLZO powders. image
引用
收藏
页数:11
相关论文
共 50 条
  • [41] Recent Progress in Interfacial Nanoarchitectonics in Solid-State Batteries
    Takada, Kazunori
    Ohta, Narumi
    Tateyama, Yoshitaka
    JOURNAL OF INORGANIC AND ORGANOMETALLIC POLYMERS AND MATERIALS, 2015, 25 (02) : 205 - 213
  • [42] Solid-State Electrolytes and Their Interfacial Properties: Implications for Solid-State Lithium Batteries
    Lee, Seul-Yi
    Rawal, Jishu
    Lee, Jieun
    Gautam, Jagadis
    Kim, Seok
    Xu, Gui-Liang
    Amine, Khalil
    Park, Soo-Jin
    ELECTROCHEMICAL ENERGY REVIEWS, 2025, 8 (01)
  • [43] Constructing Enhanced Composite Solid-State Electrolytes with Sb/Nb Co-Doped LLZO and PVDF-HFP
    Cai, Jinhai
    Liu, Yingjie
    Tan, Yingying
    Chang, Wanying
    Wu, Jingyi
    Wu, Tong
    Lai, Chunyan
    APPLIED SCIENCES-BASEL, 2024, 14 (07):
  • [44] Percolation Behavior of a Sulfide Electrolyte-Carbon Additive Matrix for Composite Cathodes in All-Solid-State Batteries
    Reisacher, Elias
    Kaya, Pinar
    Knoblauch, Volker
    BATTERIES-BASEL, 2023, 9 (12):
  • [45] A bifunctional composite artificial solid electrolyte interphase for high stable solid-state lithium batteries
    Li, Rui
    Li, Jie
    Li, Lin-xin
    Yang, Hua
    Zhang, Gang
    Xiang, Jun
    Shen, Xiang-qian
    Jing, Mao-xiang
    COLLOIDS AND SURFACES A-PHYSICOCHEMICAL AND ENGINEERING ASPECTS, 2023, 657
  • [46] Filler-Integrated Composite Polymer Electrolyte for Solid-State Lithium Batteries
    Liu, Shuailei
    Liu, Wenyi
    Ba, Deliang
    Zhao, Yongzhi
    Ye, Yihua
    Li, Yuanyuan
    Liu, Jinping
    ADVANCED MATERIALS, 2023, 35 (02)
  • [47] Graphene in Solid-State Batteries: An Overview
    Pervez, Syed Atif
    Madinehei, Milad
    Moghimian, Nima
    NANOMATERIALS, 2022, 12 (13)
  • [48] Lithium-Graphite Paste: An Interface Compatible Anode for Solid-State Batteries
    Duan, Jian
    Wu, Wangyan
    Nolan, Adelaide M.
    Wang, Tengrui
    Wen, Jiayun
    Hu, Chenchen
    Mo, Yifei
    Luo, Wei
    Huang, Yunhui
    ADVANCED MATERIALS, 2019, 31 (10)
  • [49] Direct Observation of Li-Ion Transport Heterogeneity Induced by Nanoscale Phase Separation in Li-rich Cathodes of Solid-State Batteries
    Liu, Bowen
    Hu, Naifang
    Li, Chao
    Ma, Jun
    Zhang, Jianwei
    Yang, Yuan
    Sun, Deye
    Yin, Bangxun
    Cui, Guanglei
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2022, 61 (40)
  • [50] Scalable Freeze-Tape-Casting Fabrication and Pore Structure Analysis of 3D LLZO Solid-State Electrolytes
    Shen, Hao
    Yi, Eongyu
    Heywood, Stephen
    Parkinson, Dilworth Y.
    Chen, Guoying
    Tamura, Nobumichi
    Sofie, Stephen
    Chen, Kai
    Doeff, Marca M.
    ACS APPLIED MATERIALS & INTERFACES, 2020, 12 (03) : 3494 - 3501