Direct Precursor Route for the Fabrication of LLZO Composite Cathodes for Solid-State Batteries

被引:1
作者
Kiyek, Vivien [1 ,2 ]
Schwab, Christian [1 ]
Scheld, Walter Sebastian [1 ]
Roitzheim, Christoph [1 ]
Lindner, Adrian [3 ]
Menesklou, Wolfgang [3 ]
Finsterbusch, Martin [1 ,4 ]
Fattakhova-Rohlfing, Dina [1 ,4 ,5 ,6 ]
Guillon, Olivier [1 ,2 ,4 ,7 ]
机构
[1] Forschungszentrum Julich, Inst Energy Mat & Devices Mat Synth & Proc IMD 2, D-52425 Julich, Germany
[2] Rhein Westfal TH Aachen, Inst Mineral Engn, D-52064 Aachen, Germany
[3] Karlsruhe Inst Technol KIT, Inst Appl Mat Electrochem Technol IAM ET, D-76131 Karlsruhe, Germany
[4] Helmholtz Inst Munster Ion Energy Storage IEK 12, D-48149 Munster, Germany
[5] Univ Duisburg Essen, Fac Engn, D-47057 Duisburg, Germany
[6] Univ Duisburg Essen, Ctr Nanointegrat Duisburg Essen, D-47057 Duisburg, Germany
[7] Julich Aachen Res Alliance JARA ENERGY, D-52425 Julich, Germany
关键词
all-solid-state batteries; ceramic composites; in situ synthesis; LLZO; LITHIUM-ION BATTERY; SUBSTITUTED LI7LA3ZR2O12; INTERFACE MODIFICATION; LICOO2; ELECTROLYTE; RAMAN; PERFORMANCE; CONDUCTION;
D O I
10.1002/advs.202404682
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Solid-state batteries based on Li7La3Zr2O12 (LLZO) garnet electrolyte are a robust and safe alternative to conventional lithium-ion batteries. However, the large-scale implementation of ceramic composite cathodes is still challenging due to a complex multistep manufacturing process. A new one-step route for the direct synthesis of LLZO during the manufacturing of LLZO/LiCoO2 (LCO) composite cathodes based on cheap precursors and utilizing the industrially established tape casting process is presented. It is shown that Al, Ta:LLZO can be formed directly in the presence of LCO from metal oxide precursors (LiOH, La2O3, ZrO2, Al2O3, and Ta2O5) by heating to 1050 degrees C, eliminating the time- and energy-consuming synthesis of preformed LLZO powders. In addition, performance-optimized gradient microstructures can be produced by sequential casting of slurries with different compositions, resulting in dense and flat phase-pure cathodes without unwanted ion interdiffusion or secondary phase formation. Freestanding cathodes with a thickness of 85 mu m, a relative density of 95%, and an industrial relevant LCO loading of 15 mg show an initial capacity of 82 mAh g-1 (63% of the theoretical capacity of LCO) in a solid-state cell with Li metal anodes, which is comparable to conventional LCO/LLZO cathodes and can be further improved in the future. Free-standing solid-state cathodes of Li7La3Zr2O12 (LLZO) solid electrolyte and LiCoO2 (LCO) are formed in a one-step process based on cheap precursors and utilizing the industrially established tape casting process. LLZO can be formed directly in the presence of LCO from metal oxide precursors by heating to 1050 degrees C, eliminating the time- and energy-consuming synthesis of preformed LLZO powders. image
引用
收藏
页数:11
相关论文
共 50 条
  • [31] Composite Cathodes with Succinonitrile-Based Ionic Conductors for Long-Cycle-Life Solid-State Lithium Metal Batteries
    Xin, Chengzhou
    Wen, Kaihua
    Xue, Chuanjiao
    Wang, Shuo
    Liang, Ying
    Wu, Xinbin
    Li, Liangliang
    Nan, Ce-Wen
    BATTERIES & SUPERCAPS, 2022, 5 (01)
  • [32] Composite Separators with Very High Garnet Content for Solid-State Batteries
    Vattappara, Kevin
    Finsterbusch, Martin
    Fattakhova-Rohlfing, Dina
    Kvasha, Andriy
    CHEMELECTROCHEM, 2024, 11 (21):
  • [33] Composite electrolytes and interface designs for progressive solid-state sodium batteries
    Hou, Junyu
    Zhu, Tianke
    Wang, Gang
    Cheacharoen, Rongrong
    Sun, Wu
    Lei, Xingyu
    Yuan, Qunyao
    Sun, Dalin
    Zhao, Jie
    CARBON ENERGY, 2024, 6 (10)
  • [34] Hybrid Liquid-Solid Composite Electrolytes for Sulfide-Based Solid-State Batteries: Advantages and Limitation
    Lee, Hyeongseok
    Kim, Gahyun
    Song, Youngjin
    Cho, Sungjin
    Park, Soojin
    ADVANCED FUNCTIONAL MATERIALS, 2023, 33 (46)
  • [35] Design-of-experiments-guided optimization of slurry-cast cathodes for solid-state batteries
    Teo, Jun Hao
    Strauss, Florian
    Tripkovic, Dordije
    Schweidler, Simon
    Ma, Yuan
    Bianchini, Matteo
    Janek, Juergen
    Brezesinski, Torsten
    CELL REPORTS PHYSICAL SCIENCE, 2021, 2 (06):
  • [36] Polymer Electrolytes for Compatibility With NCM Cathodes in Solid-State Lithium Metal Batteries: Challenges and Strategies
    Lin, Zhiyuan
    Li, Yunhang
    Ding, Peipei
    Lin, Chenxiao
    Chen, Fang
    Yu, Ruoxin
    Xia, Yonggao
    BATTERY ENERGY, 2025,
  • [37] A promising composite solid electrolyte incorporating LLZO into PEO/PVDF matrix for all-solid-state lithium-ion batteries
    Jun Li
    Kongjun Zhu
    Zhongran Yao
    Guoming Qian
    Jie Zhang
    Kang Yan
    Jing Wang
    Ionics, 2020, 26 : 1101 - 1108
  • [38] On state estimation of all solid-state batteries
    Kim, Youngki
    Lin, Xianke
    Abbasalinejad, Armin
    Kim, Sun Ung
    Chung, Seung Hyun
    ELECTROCHIMICA ACTA, 2019, 317 : 663 - 672
  • [39] Recent Configurational Advances for Solid-State Lithium Batteries Featuring Conversion-Type Cathodes
    Chiu, Kuan-Cheng
    Chang, Jeng-Kuei
    Su, Yu-Sheng
    MOLECULES, 2023, 28 (12):
  • [40] Recent progress of solid-state lithium batteries in China
    Wu, Dengxu
    Chen, Liquan
    Li, Hong
    Wu, Fan
    APPLIED PHYSICS LETTERS, 2022, 121 (12)