Direct Precursor Route for the Fabrication of LLZO Composite Cathodes for Solid-State Batteries

被引:1
|
作者
Kiyek, Vivien [1 ,2 ]
Schwab, Christian [1 ]
Scheld, Walter Sebastian [1 ]
Roitzheim, Christoph [1 ]
Lindner, Adrian [3 ]
Menesklou, Wolfgang [3 ]
Finsterbusch, Martin [1 ,4 ]
Fattakhova-Rohlfing, Dina [1 ,4 ,5 ,6 ]
Guillon, Olivier [1 ,2 ,4 ,7 ]
机构
[1] Forschungszentrum Julich, Inst Energy Mat & Devices Mat Synth & Proc IMD 2, D-52425 Julich, Germany
[2] Rhein Westfal TH Aachen, Inst Mineral Engn, D-52064 Aachen, Germany
[3] Karlsruhe Inst Technol KIT, Inst Appl Mat Electrochem Technol IAM ET, D-76131 Karlsruhe, Germany
[4] Helmholtz Inst Munster Ion Energy Storage IEK 12, D-48149 Munster, Germany
[5] Univ Duisburg Essen, Fac Engn, D-47057 Duisburg, Germany
[6] Univ Duisburg Essen, Ctr Nanointegrat Duisburg Essen, D-47057 Duisburg, Germany
[7] Julich Aachen Res Alliance JARA ENERGY, D-52425 Julich, Germany
关键词
all-solid-state batteries; ceramic composites; in situ synthesis; LLZO; LITHIUM-ION BATTERY; SUBSTITUTED LI7LA3ZR2O12; INTERFACE MODIFICATION; LICOO2; ELECTROLYTE; RAMAN; PERFORMANCE; CONDUCTION;
D O I
10.1002/advs.202404682
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Solid-state batteries based on Li7La3Zr2O12 (LLZO) garnet electrolyte are a robust and safe alternative to conventional lithium-ion batteries. However, the large-scale implementation of ceramic composite cathodes is still challenging due to a complex multistep manufacturing process. A new one-step route for the direct synthesis of LLZO during the manufacturing of LLZO/LiCoO2 (LCO) composite cathodes based on cheap precursors and utilizing the industrially established tape casting process is presented. It is shown that Al, Ta:LLZO can be formed directly in the presence of LCO from metal oxide precursors (LiOH, La2O3, ZrO2, Al2O3, and Ta2O5) by heating to 1050 degrees C, eliminating the time- and energy-consuming synthesis of preformed LLZO powders. In addition, performance-optimized gradient microstructures can be produced by sequential casting of slurries with different compositions, resulting in dense and flat phase-pure cathodes without unwanted ion interdiffusion or secondary phase formation. Freestanding cathodes with a thickness of 85 mu m, a relative density of 95%, and an industrial relevant LCO loading of 15 mg show an initial capacity of 82 mAh g-1 (63% of the theoretical capacity of LCO) in a solid-state cell with Li metal anodes, which is comparable to conventional LCO/LLZO cathodes and can be further improved in the future. Free-standing solid-state cathodes of Li7La3Zr2O12 (LLZO) solid electrolyte and LiCoO2 (LCO) are formed in a one-step process based on cheap precursors and utilizing the industrially established tape casting process. LLZO can be formed directly in the presence of LCO from metal oxide precursors by heating to 1050 degrees C, eliminating the time- and energy-consuming synthesis of preformed LLZO powders. image
引用
收藏
页数:11
相关论文
共 50 条
  • [21] Rechargeable Solid-State Copper Sulfide Cathodes for Alkaline Batteries: Importance of the Copper Valence State
    Duay, Jonathon
    Lambert, Timothy N.
    Kelly, Maria
    Pineda-Dominguez, Ivan
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2019, 166 (04) : A687 - A694
  • [22] Advanced Nanoparticle Coatings for Stabilizing Layered Ni-Rich Oxide Cathodes in Solid-State Batteries
    Ma, Yuan
    Teo, Jun Hao
    Walther, Felix
    Ma, Yanjiao
    Zhang, Ruizhuo
    Mazilkin, Andrey
    Tang, Yushu
    Goonetilleke, Damian
    Janek, Juergen
    Bianchini, Matteo
    Brezesinski, Torsten
    ADVANCED FUNCTIONAL MATERIALS, 2022, 32 (23)
  • [23] Research Progress on the Composite Methods of Composite Electrolytes for Solid-State Lithium Batteries
    Wang, Xu
    Huang, Sipeng
    Peng, Yiting
    Min, Yulin
    Xu, Qunjie
    CHEMSUSCHEM, 2024, 17 (14)
  • [24] Modified Li7La3Zr2O12 (LLZO) and LLZO-polymer composites for solid-state lithium batteries
    Lu, Wanzheng
    Xue, Mingzhe
    Zhang, Cunman
    ENERGY STORAGE MATERIALS, 2021, 39 (39) : 108 - 129
  • [25] All Solid-State Li/LLZO/LCO Battery Enabled by Alumina Interfacial Coating
    Ren, Yaoyu
    Wachsman, Eric D.
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2022, 169 (04)
  • [26] Garnet-Based Solid-State Li Batteries with High-Surface-Area Porous LLZO Membranes
    Zhang, Huanyu
    Okur, Faruk
    Pant, Bharat
    Klimpel, Matthias
    Butenko, Sofiia
    Karabay, Dogan Tarik
    Parrilli, Annapaola
    Neels, Antonia
    Cao, Ye
    Kravchyk, Kostiantyn V.
    Kovalenko, Maksym V.
    ACS APPLIED MATERIALS & INTERFACES, 2024, 16 (10) : 12353 - 12362
  • [27] Modeling Effective Ionic Conductivity and Binder Influence in Composite Cathodes for All-Solid-State Batteries
    Bielefeld, Anja
    Weber, Dominik A.
    Janek, Juergen
    ACS APPLIED MATERIALS & INTERFACES, 2020, 12 (11) : 12821 - 12833
  • [28] PEO/PPC based Composite Solid Electrolyte for Room Temperature Operable All Solid-State Batteries
    Shin, Sohyeon
    Kim, Sunghoon
    Cho, Younghyun
    Ahn, Wook
    JOURNAL OF THE KOREAN ELECTROCHEMICAL SOCIETY, 2022, 25 (03): : 105 - 112
  • [29] Resist interface delamination and electrolyte cracking in cathodes of solid-state batteries by compliant electrolytes
    Zhang, Tao
    Chen, Jian
    Yao, Xiaohu
    ENGINEERING FRACTURE MECHANICS, 2025, 315
  • [30] Design, production, and characterization of three-dimensionally-structured oxide-polymer composite cathodes for all-solid-state batteries Polymer composite cathodes for all-solid-state batteries
    Kriegler, Johannes
    Jaimez-Farnham, Elena
    Scheller, Maximilian
    Dashjav, Enkhtsetseg
    Konwitschny, Fabian
    Wach, Lovis
    Hille, Lucas
    Tietz, Frank
    Zaeh, Michael F.
    ENERGY STORAGE MATERIALS, 2023, 57 : 607 - 617