Direct Precursor Route for the Fabrication of LLZO Composite Cathodes for Solid-State Batteries

被引:1
|
作者
Kiyek, Vivien [1 ,2 ]
Schwab, Christian [1 ]
Scheld, Walter Sebastian [1 ]
Roitzheim, Christoph [1 ]
Lindner, Adrian [3 ]
Menesklou, Wolfgang [3 ]
Finsterbusch, Martin [1 ,4 ]
Fattakhova-Rohlfing, Dina [1 ,4 ,5 ,6 ]
Guillon, Olivier [1 ,2 ,4 ,7 ]
机构
[1] Forschungszentrum Julich, Inst Energy Mat & Devices Mat Synth & Proc IMD 2, D-52425 Julich, Germany
[2] Rhein Westfal TH Aachen, Inst Mineral Engn, D-52064 Aachen, Germany
[3] Karlsruhe Inst Technol KIT, Inst Appl Mat Electrochem Technol IAM ET, D-76131 Karlsruhe, Germany
[4] Helmholtz Inst Munster Ion Energy Storage IEK 12, D-48149 Munster, Germany
[5] Univ Duisburg Essen, Fac Engn, D-47057 Duisburg, Germany
[6] Univ Duisburg Essen, Ctr Nanointegrat Duisburg Essen, D-47057 Duisburg, Germany
[7] Julich Aachen Res Alliance JARA ENERGY, D-52425 Julich, Germany
关键词
all-solid-state batteries; ceramic composites; in situ synthesis; LLZO; LITHIUM-ION BATTERY; SUBSTITUTED LI7LA3ZR2O12; INTERFACE MODIFICATION; LICOO2; ELECTROLYTE; RAMAN; PERFORMANCE; CONDUCTION;
D O I
10.1002/advs.202404682
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Solid-state batteries based on Li7La3Zr2O12 (LLZO) garnet electrolyte are a robust and safe alternative to conventional lithium-ion batteries. However, the large-scale implementation of ceramic composite cathodes is still challenging due to a complex multistep manufacturing process. A new one-step route for the direct synthesis of LLZO during the manufacturing of LLZO/LiCoO2 (LCO) composite cathodes based on cheap precursors and utilizing the industrially established tape casting process is presented. It is shown that Al, Ta:LLZO can be formed directly in the presence of LCO from metal oxide precursors (LiOH, La2O3, ZrO2, Al2O3, and Ta2O5) by heating to 1050 degrees C, eliminating the time- and energy-consuming synthesis of preformed LLZO powders. In addition, performance-optimized gradient microstructures can be produced by sequential casting of slurries with different compositions, resulting in dense and flat phase-pure cathodes without unwanted ion interdiffusion or secondary phase formation. Freestanding cathodes with a thickness of 85 mu m, a relative density of 95%, and an industrial relevant LCO loading of 15 mg show an initial capacity of 82 mAh g-1 (63% of the theoretical capacity of LCO) in a solid-state cell with Li metal anodes, which is comparable to conventional LCO/LLZO cathodes and can be further improved in the future. Free-standing solid-state cathodes of Li7La3Zr2O12 (LLZO) solid electrolyte and LiCoO2 (LCO) are formed in a one-step process based on cheap precursors and utilizing the industrially established tape casting process. LLZO can be formed directly in the presence of LCO from metal oxide precursors by heating to 1050 degrees C, eliminating the time- and energy-consuming synthesis of preformed LLZO powders. image
引用
收藏
页数:11
相关论文
共 50 条
  • [1] Rational Design of LLZO/Polymer Solid Electrolytes for Solid-State Batteries
    Liu, Xueping
    Xiao, Zhe
    Peng, Huarong
    Jiang, Dongting
    Xie, Honggui
    Sun, Yiling
    Zhong, Shengkui
    Qian, Zhengfang
    Wang, Renheng
    CHEMISTRY-AN ASIAN JOURNAL, 2022, 17 (24)
  • [2] Succinonitrile-Lithium Salt Complexes as Solid Catholytes for LLZO-Based Solid-State Batteries
    Go, Wooseok
    Tucker, Michael C.
    Doeff, Marca M.
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2024, 171 (02)
  • [3] Composite Cathodes for Solid-State Lithium Batteries: "Catholytes" the Underrated Giants
    Al-Salih, Hilal
    Houache, Mohamed Seif Eddine
    Baranova, Elena A.
    Abu-Lebdeh, Yaser
    ADVANCED ENERGY AND SUSTAINABILITY RESEARCH, 2022, 3 (08):
  • [4] The Riddle of Dark LLZO: Cobalt Diffusion in Garnet Separators of Solid-State Lithium Batteries
    Scheld, Walter Sebastian
    Kim, Kwangnam
    Schwab, Christian
    Moy, Alexandra C.
    Jiang, Shi-Kai
    Mann, Markus
    Dellen, Christian
    Sohn, Yoo Jung
    Lobe, Sandra
    Ihrig, Martin
    Danner, Michael Gregory
    Chang, Chia-Yu
    Uhlenbruck, Sven
    Wachsman, Eric D.
    Hwang, Bing Joe
    Sakamoto, Jeff
    Wan, Liwen F.
    Wood, Brandon C.
    Finsterbusch, Martin
    Fattakhova-Rohlfing, Dina
    ADVANCED FUNCTIONAL MATERIALS, 2023, 33 (43)
  • [5] Coating materials and processes for cathodes in sulfide-based all solid-state batteries
    Morchhale, Ayush
    Tang, Zhenghuan
    Yu, Chanyeop
    Farahati, Rashid
    Kim, Jung-Hyun
    CURRENT OPINION IN ELECTROCHEMISTRY, 2023, 39
  • [6] How dispersed LLZTO enhances ionic conductivity in LiFePO4 composite cathodes for solid-state batteries
    Kumchompoo, Jaturon
    Lee, Jyh-Tsung
    Li, Chia-Chen
    JOURNAL OF ENERGY STORAGE, 2024, 102
  • [7] Construction of conductive and flexible composite cathodes for room-temperature solid-state lithium batteries
    He, Minghui
    Cui, Zhonghui
    Han, Feng
    Guo, Xiangxin
    JOURNAL OF ALLOYS AND COMPOUNDS, 2018, 762 : 157 - 162
  • [8] Designing Cathodes and Cathode Active Materials for Solid-State Batteries
    Minnmann, Philip
    Strauss, Florian
    Bielefeld, Anja
    Ruess, Raffael
    Adelhelm, Philipp
    Burkhardt, Simon
    Dreyer, Soeren L.
    Trevisanello, Enrico
    Ehrenberg, Helmut
    Brezesinski, Torsten
    Richter, Felix H.
    Janek, Juergen
    ADVANCED ENERGY MATERIALS, 2022, 12 (35)
  • [9] Unveiling crystal orientation-dependent interface property in composite cathodes for solid-state batteries by in situ microscopic probe
    Lee, Sunyoung
    Park, Hayoung
    Kim, Jae Young
    Kim, Jihoon
    Choi, Min-Ju
    Han, Sangwook
    Kim, Sewon
    Kim, Wonju
    Jang, Ho Won
    Park, Jungwon
    Kang, Kisuk
    NATURE COMMUNICATIONS, 2024, 15 (01)
  • [10] Solid-State Direct Regeneration of Spent Lithium Cobalt Oxide Cathodes for Li-Ion Batteries
    Kumar, Sudip
    Chakravarty, Koushik
    Kumar, Kundan
    Sen, Arindam
    Ghanty, Chandan
    Chakravarty, Sanchita
    Kundu, Rajen
    ENERGY & FUELS, 2024, 38 (07) : 6499 - 6507