Diffusion Model-Based Channel Estimation for RIS-Aided Communication Systems

被引:0
|
作者
Tong, Weiqiang [1 ]
Xu, Wenjun [1 ]
Wang, Fengyu [2 ]
Ni, Wanli [3 ,4 ]
Zhang, Jinglin [1 ]
机构
[1] Beijing Univ Posts & Telecommun, State Key Lab Networking & Switching Technol, Beijing 100876, Peoples R China
[2] Beijing Univ Posts & Telecommun, Sch Artificial Intelligence, Beijing 100876, Peoples R China
[3] Tsinghua Univ, Dept Elect Engn, Beijing 100084, Peoples R China
[4] Tsinghua Univ, Beijing Natl Res Ctr Informat Sci & Technol, Beijing 100084, Peoples R China
基金
中国国家自然科学基金;
关键词
diffusion model; phase noise; reconfigurable intelligent surface; Channel estimation;
D O I
10.1109/LWC.2024.3431525
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this letter, we investigate the channel estimation problem in the reconfigurable intelligent surface (RIS)-aided wireless communication system. To recover channels accurately, we propose a novel diffusion model-based channel estimation method for combating the noise at the receiver effectively. Specifically, the channel recovery is accomplished via a continuous prior sampling process, where the prior information is derived from a U-Net that undergoes likelihood-based training. Additionally, in order to reduce the adverse effect of the phase noise at the RIS, we incorporate the gradient descent value of RIS phase into the sampling process. Simulation results demonstrate that the proposed method surpasses baselines in estimation accuracy, achieving a superior performance of more than 3.2 dB. Furthermore, the proposed method exhibits remarkable robustness, working effectively under different noise levels.
引用
收藏
页码:2586 / 2590
页数:5
相关论文
共 50 条
  • [41] Adaptive Space Shift Keying for RIS-Aided Communication
    Yue, Ming
    Peng, Yuyang
    Xiong, Liping
    Zhang, Chaorong
    Al-hazemi, Fawaz
    Mirza, Mohammad M. E. R. A. J.
    IEICE TRANSACTIONS ON FUNDAMENTALS OF ELECTRONICS COMMUNICATIONS AND COMPUTER SCIENCES, 2024, E107A (11) : 1658 - 1662
  • [42] RIS-Aided XL-MIMO Channel Estimation Based on Expectation-Maximization
    Zhang, Xiao
    Shao, Hua
    Zhang, Wenyu
    Xie, Zhiwei
    Yang, Xianze
    Jing, Wenpeng
    IEEE COMMUNICATIONS LETTERS, 2024, 28 (12) : 2869 - 2873
  • [43] PARAFAC Decomposition based Channel Estimation for RIS-aided Multi-User MISO Wireless Communications
    Beldi, Chaima
    Dziri, Ali
    Abdelkefi, Fatma
    Shaiek, Hmaied
    2023 INTERNATIONAL WIRELESS COMMUNICATIONS AND MOBILE COMPUTING, IWCMC, 2023, : 1537 - 1542
  • [44] Channel Estimation Effect on Sum-Rate Analysis of RIS-Aided UAV-Based MISO Systems
    Hashi, Ahmed
    Aldirmaz-Colak, Sultan
    Basaran, Mehmet
    Durak-Ata, Lutfiye
    2022 30TH SIGNAL PROCESSING AND COMMUNICATIONS APPLICATIONS CONFERENCE, SIU, 2022,
  • [45] Hierarchically Structured Matrix Recovery-Based Channel Estimation for RIS-Aided Communications
    Guo, Yabo
    Sun, Peng
    Yuan, Zhengdao
    Guo, Qinghua
    Wang, Zhongyong
    IEEE WIRELESS COMMUNICATIONS LETTERS, 2024, 13 (02) : 422 - 426
  • [46] Channel Estimation for STAR-RIS-Aided Wireless Communication
    Wu, Chenyu
    You, Changsheng
    Liu, Yuanwei
    Gu, Xuemai
    Cai, Yunlong
    IEEE COMMUNICATIONS LETTERS, 2022, 26 (03) : 652 - 656
  • [47] Deep Reinforcement Learning for Channel Estimation in RIS-Aided Wireless Networks
    Kim, Kitae
    Tun, Yan Kyaw
    Munir, Md. Shirajum
    Saad, Walid
    Hong, Choong Seon
    IEEE COMMUNICATIONS LETTERS, 2023, 27 (08) : 2053 - 2057
  • [48] Joint CFO and Channel Estimation for RIS-Aided Multi-User Massive MIMO Systems
    Jeong, Sumin
    Farhang, Arman
    Perovic, Nemanja Stefan
    Flanagan, Mark F.
    IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2023, 72 (09) : 11800 - 11813
  • [49] Wireless Beacon Enabled Hybrid Sparse Channel Estimation for RIS-Aided mmWave Communications
    Guo, Xufeng
    Chen, Yuanbin
    Wang, Ying
    IEEE TRANSACTIONS ON COMMUNICATIONS, 2023, 71 (05) : 3144 - 3160
  • [50] Enhanced channel estimation for double RIS-aided MIMO systems using coupled tensor decompositions
    Nwalozie, Gerald C.
    de Almeida, Andre L. F.
    Haardt, Martin
    SIGNAL PROCESSING, 2025, 234