Twisted Kähler-Einstein metrics on flag varieties

被引:0
作者
Correa, Eder M. [1 ]
Grama, Lino [1 ]
机构
[1] Univ Campinas UNICAMP, Inst Math Stat & Sci Comp IMECC, Campinas, Brazil
关键词
CURVATURE KAHLER-METRICS; GREATEST LOWER BOUNDS; EINSTEIN-METRICS; RICCI CURVATURE; FANO VARIETIES; STABILITY; BUNDLES; SPACE; FLOW;
D O I
10.1002/mana.202300553
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we present a description of invariant twisted K & auml;hler-Einstein (tKE) metrics on flag varieties. Additionally, we delve into the applications of the concepts utilized in proving our main result, particularly concerning the existence of the invariant twisted constant scalar curvature K & auml;hler metrics. Moreover, we provide a precise description of the greatest Ricci lower bound for arbitrary K & auml;hler classes on flag varieties. From this description, we establish a sequence of inequalities linked to optimal upper bounds for the volume of K & auml;hler metrics, relying solely on tools derived from the Lie theory. Further, we illustrate our main results through various examples, encompassing full flag varieties, the projectivization of the tangent bundle of Pn+1${\mathbb {P}}<^>{n+1}$, and families of flag varieties with a Picard number 2.
引用
收藏
页码:4273 / 4287
页数:15
相关论文
共 43 条
[1]  
Akhiezer D. N., 1995, LIE GROUP ACTIONS CO, VE27
[2]   HOMOGENEOUS EINSTEIN METRICS ON GENERALIZED FLAG MANIFOLDS WITH FIVE ISOTROPY SUMMANDS [J].
Arvanitoyeorgos, Andreas ;
Chrysikos, Ioannis ;
Sakane, Yusuke .
INTERNATIONAL JOURNAL OF MATHEMATICS, 2013, 24 (10)
[3]   Invariant Einstein metrics on flag manifolds with four isotropy summands [J].
Arvanitoyeorgos, Andreas ;
Chrysikos, Ioannis .
ANNALS OF GLOBAL ANALYSIS AND GEOMETRY, 2010, 37 (02) :185-219
[4]   Quasi-potentials and Kahler-Einstein metrics on flag manifolds, II [J].
Azad, H ;
Biswas, I .
JOURNAL OF ALGEBRA, 2003, 269 (02) :480-491
[5]   A VARIATIONAL APPROACH TO THE YAU-TIAN-DONALDSON CONJECTURE [J].
Berman, Robert J. ;
Boucksom, Ebastien ;
Jonsson, Mattias .
JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 2021, 34 (03) :605-652
[6]   CONVEXITY OF THE K-ENERGY ON THE SPACE OF KAHLER METRICS AND UNIQUENESS OF EXTREMAL METRICS [J].
Berman, Robert J. ;
Berndtsson, Bo .
JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 2017, 30 (04) :1165-1196
[7]   The volume of Kahler-Einstein Fano varieties and convex bodies [J].
Berman, Robert J. ;
Berndtsson, Bo .
JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2017, 723 :127-152
[8]   Optimal destabilization of K-unstable Fano varieties via stability thresholds [J].
Blum, Harold ;
Liu, Yuchen ;
Zhou, Chuyu .
GEOMETRY & TOPOLOGY, 2022, 26 (06) :2507-2564
[9]   Thresholds, valuations, and K-stability [J].
Blum, Harold ;
Jonsson, Mattias .
ADVANCES IN MATHEMATICS, 2020, 365
[10]   CHARACTERISTIC CLASSES AND HOMOGENEOUS SPACES .1. [J].
BOREL, A ;
HIRZEBRUCH, F .
AMERICAN JOURNAL OF MATHEMATICS, 1958, 80 (02) :458-538