Ultralow-power in-memory computing based on ferroelectric memcapacitor network

被引:27
作者
Tian, Bobo [1 ,2 ]
Xie, Zhuozhuang
Chen, Luqiu
Hao, Shenglan [1 ,4 ]
Liu, Yifei [1 ]
Feng, Guangdi [1 ]
Liu, Xuefeng [1 ]
Liu, Hongbo [3 ]
Yang, Jing [1 ]
Zhang, Yuanyuan [1 ]
Bai, Wei [1 ]
Lin, Tie
Shen, Hong [5 ]
Meng, Xiangjian [5 ]
Zhong, Ni [1 ]
Peng, Hui [1 ]
Yue, Fangyu [1 ]
Tang, Xiaodong [1 ]
Wang, Jianlu [6 ]
Zhu, Qiuxiang [1 ,8 ]
Ivry, Yachin [9 ]
Dkhil, Brahim
Chu, Junhao [1 ,5 ,7 ]
Duan, Chungang [1 ,10 ]
机构
[1] East China Normal Univ, Shanghai Ctr Brain Inspired Intelligent Mat & Dev, Dept Elect, Key Lab Polar Mat & Devices, Shanghai 200241, Peoples R China
[2] Zhejiang Lab, Hangzhou, Peoples R China
[3] Shanghai Univ Engn Sci, Sch Mat Sci & Engn, Shanghai 201620, Peoples R China
[4] Univ Paris Saclay, CentraleSupelec, Lab SPMS, CNRSUMR8580, Gif Sur Yvette, France
[5] Chinese Acad Sci, Shanghai Inst Tech Phys, State Key Lab Infrared Phys, Shanghai, Peoples R China
[6] Fudan Univ, Frontier Inst Chip & Syst, Shanghai, Peoples R China
[7] Fudan Univ, Inst Optoelect, Shanghai, Peoples R China
[8] Southern Univ Sci & Technol, Guangdong Provis Key Lab Funct Oxide Mat & Device, Shenzhen, Peoples R China
[9] Technion Israel Inst Technol, Solid State Inst, Dept Mat Sci & Engn, Haifa, Israel
[10] Shanxi Univ, Collaborat Innovat Ctr Extreme Opt, Taiyuan, Shanxi, Peoples R China
来源
EXPLORATION | 2023年 / 3卷 / 03期
基金
中国国家自然科学基金;
关键词
ferroelectric; in-memory computing; memcapacitor; P(VDF-TrFE); ultralow power; CAPACITIVE NEURAL-NETWORK;
D O I
10.1002/EXP.20220126
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Analog storage through synaptic weights using conductance in resistive neuromorphic systems and devices inevitably generates harmful heat dissipation. This thermal issue not only limits the energy efficiency but also hampers the very-large-scale and highly complicated hardware integration as in the human brain. Here we demonstrate that the synaptic weights can be simulated by reconfigurable non-volatile capacitances of a ferroelectric-based memcapacitor with ultralow-power consumption. The as-designed metal/ferroelectric/metal/insulator/semiconductor memcapacitor shows distinct 3-bit capacitance states controlled by the ferroelectric domain dynamics. These robust memcapacitive states exhibit uniform maintenance of more than 10(4) s and well endurance of 10(9) cycles. In a wired memcapacitor crossbar network hardware, analog vector-matrix multiplication is successfully implemented to classify 9-pixel images by collecting the sum of displacement currents (I = C x dV/dt) in each column, which intrinsically consumes zero energy in memcapacitors themselves. Our work sheds light on an ultralow-power neural hardware based on ferroelectric memcapacitors.
引用
收藏
页数:9
相关论文
共 33 条
[1]   Neuromorphic Atomic Switch Networks [J].
Avizienis, Audrius V. ;
Sillin, Henry O. ;
Martin-Olmos, Cristina ;
Shieh, Hsien Hang ;
Aono, Masakazu ;
Stieg, Adam Z. ;
Gimzewski, James K. .
PLOS ONE, 2012, 7 (08)
[2]   Learning through ferroelectric domain dynamics in solid-state synapses [J].
Boyn, Soeren ;
Grollier, Julie ;
Lecerf, Gwendal ;
Xu, Bin ;
Locatelli, Nicolas ;
Fusil, Stephane ;
Girod, Stephanie ;
Carretero, Cecile ;
Garcia, Karin ;
Xavier, Stephane ;
Tomas, Jean ;
Bellaiche, Laurent ;
Bibes, Manuel ;
Barthelemy, Agnes ;
Saighi, Sylvain ;
Garcia, Vincent .
NATURE COMMUNICATIONS, 2017, 8
[3]   A fully integrated reprogrammable memristor-CMOS system for efficient multiply-accumulate operations [J].
Cai, Fuxi ;
Correll, Justin M. ;
Lee, Seung Hwan ;
Lim, Yong ;
Bothra, Vishishtha ;
Zhang, Zhengya ;
Flynn, Michael P. ;
Lu, Wei D. .
NATURE ELECTRONICS, 2019, 2 (07) :290-299
[4]   Molecular ferroelectric/semiconductor interfacial memristors for artificial synapses [J].
Cai, Yichen ;
Zhang, Jialong ;
Yan, Mengge ;
Jiang, Yizhou ;
Jawad, Husnain ;
Tian, Bobo ;
Wang, Wenchong ;
Zhan, Yiqiang ;
Qin, Yajie ;
Xiong, Shisheng ;
Cong, Chunxiao ;
Qiu, Zhi-Jun ;
Duan, Chungang ;
Liu, Ran ;
Hu, Laigui .
NPJ FLEXIBLE ELECTRONICS, 2022, 6 (01)
[5]  
Chanthbouala A, 2012, NAT MATER, V11, P860, DOI [10.1038/NMAT3415, 10.1038/nmat3415]
[6]   Graphene-ferroelectric transistors as complementary synapses for supervised learning in spiking neural network [J].
Chen, Yangyang ;
Zhou, Yue ;
Zhuge, Fuwei ;
Tian, Bobo ;
Yan, Mengge ;
Li, Yi ;
He, Yuhui ;
Miao, Xiang Shui .
NPJ 2D MATERIALS AND APPLICATIONS, 2019, 3 (1)
[7]   Recent progress in self-powered multifunctional e-skin for advanced applications [J].
Chen, Yunfeng ;
Gao, Zhengqiu ;
Zhang, Fangjia ;
Wen, Zhen ;
Sun, Xuhui .
EXPLORATION, 2022, 2 (01)
[8]   Ferroelectric photosensor network: an advanced hardware solution to real-time machine vision [J].
Cui, Boyuan ;
Fan, Zhen ;
Li, Wenjie ;
Chen, Yihong ;
Dong, Shuai ;
Tan, Zhengwei ;
Cheng, Shengliang ;
Tian, Bobo ;
Tao, Ruiqiang ;
Tian, Guo ;
Chen, Deyang ;
Hou, Zhipeng ;
Qin, Minghui ;
Zeng, Min ;
Lu, Xubing ;
Zhou, Guofu ;
Gao, Xingsen ;
Liu, Jun-Ming .
NATURE COMMUNICATIONS, 2022, 13 (01)
[9]   Depolarization corrections to the coercive field in thin-film ferroelectrics [J].
Dawber, M ;
Chandra, P ;
Littlewood, PB ;
Scott, JF .
JOURNAL OF PHYSICS-CONDENSED MATTER, 2003, 15 (24) :L393-L398
[10]   Energy-efficient memcapacitor devices for neuromorphic computing [J].
Demasius, Kai-Uwe ;
Kirschen, Aron ;
Parkin, Stuart .
NATURE ELECTRONICS, 2021, 4 (10) :748-756