Influence of Aluminum Pillar Nanostructures on Thin-Film Organic Solar Cells

被引:0
作者
Phengdaam, Apichat [1 ]
Sitpathom, Nonthanan [1 ]
Hong, Minghui [2 ]
Shinbo, Kazunari [3 ,4 ]
Kato, Keizo [3 ,4 ]
Baba, Akira [3 ,4 ]
机构
[1] Prince Songkla Univ, Fac Sci, Div Phys Sci, Hat Yai 90110, Songkhla, Thailand
[2] Xiamen Univ, Pen Tung Sah Inst Micronano Sci & Technol, Xiamen 361005, Peoples R China
[3] Niigata Univ, Grad Sch Sci & Technol, 8050 Ikarashi 2 Nocho,Nishi Ku, Niigata 9502181, Japan
[4] Niigata Univ, Fac Engn, 8050 Ikarashi 2 Nocho,Nishi Ku, Niigata 9502181, Japan
来源
PHYSICA STATUS SOLIDI A-APPLICATIONS AND MATERIALS SCIENCE | 2024年 / 221卷 / 20期
基金
日本学术振兴会;
关键词
aluminum pillar nanostructures; finite-difference time-domain; organic solar cells; pillar nanostructures; surface plasmon resonance; PLASMONIC NANOPARTICLES; ENHANCED PHOTOCURRENT; PERFORMANCE; SURFACES; SULFIDE;
D O I
10.1002/pssa.202400221
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
This study explores the application of pillar nanostructures in organic solar cells (OSCs). The aluminum pillar nanostructures (AlPNSs) are fabricated on an active layer surface comprising of a blend poly(3-hexylthiophene-2,5-diyl) and [6,6]-phenyl C61 butyric acid methyl ester using nanoimprinting. Aluminum back electrodes are formed, resulting in AlPNSs with an imprinted pattern height of 60 +/- 6 nm and a pitch of 212 +/- 49 nm. Atomic force microscope images and current density versus voltage curves are obtained for the fabricated devices, both with and without AlPNSs. The results indicate a solar cell efficiency increase of 15.16% in the AlPNS OSCs compared to the reference cells. To investigate the role of AlPNSs in the enhancement, impedance spectroscopy, incident photon-to-current efficiency, UV-Vis reflection spectroscopy, and finite-difference time-domain simulations are performed for the both devices. The results demonstrate that the combination of propagating surface plasmon resonance and light-trapping properties due to AlPNSs significantly enhances the overall optical performance. This research provides new insights into the potential of imprinted nanostructures for enhancing OSC performance, including their plasmonic and optical characteristics. This research investigates the utilization of aluminum pillar nanostructures (AlPNSs) in organic solar cells (OSCs). AlPNSs are fabricated on the active layer as back electrode, leading to a 15.16% enhancement in solar cell efficiency compared to reference cells. The findings shed light on the promising prospects of the nanostructures, highlighting their plasmonic and optical attributes in improving OSC performance.image (c) 2024 WILEY-VCH GmbH
引用
收藏
页数:6
相关论文
共 50 条
[21]   Engineering Disorder for Light Trapping in Thin-Film Solar Cells [J].
Kowalczewski, Piotr ;
Liscidini, Marco ;
Andreani, Lucio Claudio .
2013 15TH INTERNATIONAL CONFERENCE ON TRANSPARENT OPTICAL NETWORKS (ICTON 2013), 2013,
[22]   Design Strategy of Quantum Dot Thin-Film Solar Cells [J].
Kim, Taewan ;
Lim, Seyeong ;
Yun, Sunhee ;
Jeong, Sohee ;
Park, Taiho ;
Choi, Jongmin .
SMALL, 2020, 16 (45)
[23]   Use of plasmonic nanoparticles made of aluminum and alloys of aluminum to enhance the opto-electronic performance of thin-film solar cells [J].
Fairooz, Fatema ;
Hasan, Jawad ;
Arefin, S. M. Nayeem ;
Islam, Shahriar ;
Chowdhury, Mustafa Habib .
2020 IEEE REGION 10 SYMPOSIUM (TENSYMP) - TECHNOLOGY FOR IMPACTFUL SUSTAINABLE DEVELOPMENT, 2020, :1233-1236
[24]   Au nanoparticle enhanced thin-film silicon solar cells [J].
Liu, Xiaojing ;
Jia, Lujian ;
Fan, Guopeng ;
Gou, Jing ;
Liu, Shengzhong Frank ;
Yan, Baojie .
SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2016, 147 :225-234
[25]   Origin of the open-circuit voltage of organic thin-film solar cells based on conjugated polymers [J].
Yamanari, Toshihiro ;
Taima, Tetsuya ;
Sakai, Jun ;
Saito, Kazuhiro .
SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2009, 93 (6-7) :759-761
[26]   Synthesis and Characterization of Cyclopentadithiophene and Thienothiophene-Based Polymers for Organic Thin-Film Transistors and Solar Cells [J].
Pramod Kandoth Madathil ;
Shinuk Cho ;
Sinil Choi ;
Tae-Dong Kim ;
Kwang-Sup Lee .
Macromolecular Research, 2018, 26 :934-941
[27]   Thin-Film Solar Cells by Silicon-Based Nano-Pyramid Arrays [J].
Huang, Zhisen ;
Wang, Bo .
ADVANCED THEORY AND SIMULATIONS, 2022, 5 (05)
[28]   Surrogate based modeling and optimization of plasmonic thin film organic solar cells [J].
Kaya, Mine ;
Hajimirza, Shima .
INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2018, 118 :1128-1142
[29]   Chloro aluminum phthalocyanine-based organic thin-film transistors as cannabinoid sensors: engineering the thin film response [J].
Lamontagne, Halynne R. ;
Comeau, Zachary J. ;
Cranston, Rosemary R. ;
Boileau, Nicholas T. ;
Harris, Cory S. ;
Shuhendler, Adam J. ;
Lessard, Benoit H. .
SENSORS & DIAGNOSTICS, 2022, 1 (06) :1165-1175
[30]   Impact of Grain Size and Grain Nature in Thin-Film Solar Cells [J].
Prabu, R. Thandaiah ;
Malathi, S. R. ;
Kumar, Rajnish ;
Alkhalidi, Huda S. ;
Kumar, Atul .
ENERGY TECHNOLOGY, 2024, 12 (01)