A universal machine learning framework to automatically identify high-performance covalent organic framework membranes for CH4/H2 separation

被引:0
|
作者
Qiu, Yong [1 ]
Chen, Letian [2 ]
Zhang, Xu [1 ]
Ping, Dehai [3 ]
Tian, Yun [1 ]
Zhou, Zhen [1 ,2 ]
机构
[1] Zhengzhou Univ, Interdisciplinary Res Ctr Sustainable Energy Sci &, Sch Chem Engn, Zhengzhou, Peoples R China
[2] Nankai Univ, Inst New Energy Mat Chem, Renewable Energy Convers & Storage Ctr ReCast, Sch Mat Sci & Engn,Key Lab Adv Energy Mat Chem,Min, Tianjin, Peoples R China
[3] Zhengzhou Univ, Zhongyuan Crit Met Lab, Zhengzhou, Peoples R China
基金
中国国家自然科学基金;
关键词
classical density functional theory; gas separation; machine learning; statistical thermodynamics; DENSITY-FUNCTIONAL THEORY; NANOPOROUS MATERIALS; ADSORPTION; HYDROGEN; METHANE; GAS; STORAGE; COF; DIFFUSION; FIELD;
D O I
10.1002/aic.18575
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
A universal machine learning framework is proposed to predict and classify membrane performance efficiently and accurately, achieved by combining classical density functional theory and string method. Through application of this framework, we conducted high-throughput computations under industrial conditions, utilizing an extensive database containing nearly 70,000 covalent organic framework (COF) structures for CH4/H-2 separation. The best-performing COF identified surpasses the materials reported in the previously documented MOF and COF databases, exhibiting an impressive adsorption selectivity for CH4/H-2 exceeding 82 and a membrane selectivity reaching as high as 248. More impressively, some of the best candidates identified from this framework have been verified through previous experimental works. Furthermore, the automated machine learning framework and its corresponding scoring system not only enable rapid identification of promising membrane materials from a vast material space but also contribute to a comprehensive understanding of the governing mechanisms that determine separation performance.
引用
收藏
页数:11
相关论文
共 50 条
  • [21] Functionalized metal organic framework-polyimide mixed matrix membranes for CO2/CH4 separation
    Nik, Omid Ghaffari
    Chen, Xiao Yuan
    Kaliaguine, Serge
    JOURNAL OF MEMBRANE SCIENCE, 2012, 413 : 48 - 61
  • [22] Simulation Study of Mass Transfer Characteristics of CH4/CO2 Separation in Multiple Types of Covalent Organic Framework Membrane Materials
    Yu, Chenghao
    Lu, Chang
    Wang, Xinwei
    Zhou, Wenteng
    Yang, Zhengda
    Yu, Xichong
    Wang, Enwei
    Lin, Riyi
    INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2023, 62 (31) : 12291 - 12304
  • [23] Gas separation performance of 6FDA-DAM-ZIF-11 mixed-matrix membranes for H2/CH4 and CO2/CH4 separation
    Boroglu, Mehtap Safak
    Yumru, Ahenk Burcu
    SEPARATION AND PURIFICATION TECHNOLOGY, 2017, 173 : 269 - 279
  • [24] Porous Carbon Nanotube Membranes for Separation of H2/CH4 and CO2/CH4 Mixtures
    Bucior, Benjamin J.
    Chen, De-Li
    Liu, Jinchen
    Johnson, J. Karl
    JOURNAL OF PHYSICAL CHEMISTRY C, 2012, 116 (49): : 25904 - 25910
  • [25] CNT/PDMS composite membranes for H2 and CH4 gas separation
    Nour, Majid
    Berean, Kyle
    Balendhran, Sivacarendran
    Ou, Jian Zhen
    Du Plessis, Johan
    McSweeney, Chris
    Bhaskaran, Madhu
    Sriram, Sharath
    Kalantar-zadeh, Kourosh
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2013, 38 (25) : 10494 - 10501
  • [26] Adsorption and diffusion of H2, N2, CO, CH4 and CO2 in UTSA-16 metal-organic framework extrudates
    Agueda, Vicente I.
    Delgado, Jose A.
    Uguina, Maria A.
    Brea, Pablo
    Spjelkavik, Aud I.
    Blom, Richard
    Grande, Carlos
    CHEMICAL ENGINEERING SCIENCE, 2015, 124 : 159 - 169
  • [27] Computational simulation study on adsorption and separation of CH4/H2 in five higher-valency covalent organic frameworks
    Li, Xiao-Dong
    Yang, Peng-hui
    Huang, Xiao-Yu
    Liu, Xiu-Ying
    Yu, Jing-Xin
    Chen, Zheng
    MATERIALS TODAY COMMUNICATIONS, 2022, 33
  • [28] Comparative Study of Separation Performance of COFs and MOFs for CH4/CO2/H2 Mixtures
    Liu, Yunhua
    Liu, Dahuan
    Yang, Qingyuan
    Zhong, Chongli
    Mi, Jianguo
    INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2010, 49 (06) : 2902 - 2906
  • [29] Design of a Metal-Organic Framework with Enhanced Back Bonding for Separation of N2 and CH4
    Lee, Kyuho
    Isley, William C., III
    Dzubak, Allison L.
    Verma, Pragya
    Stoneburner, Samuel J.
    Lin, Li-Chiang
    Howe, Joshua D.
    Bloch, Eric D.
    Reed, Douglas A.
    Hudson, Matthew R.
    Brown, Craig M.
    Long, Jeffrey R.
    Neaton, Jeffrey B.
    Smit, Berend
    Cramer, Christopher J.
    Truhlar, Donald G.
    Gagliardi, Laura
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2014, 136 (02) : 698 - 704
  • [30] Adsorption, Diffusion, and Separation of CH4/H2 Mixtures in Covalent Organic Frameworks: Molecular Simulations and Theoretical Predictions
    Keskin, Seda
    JOURNAL OF PHYSICAL CHEMISTRY C, 2012, 116 (02): : 1772 - 1779