A MESHLESS SOLVER FOR BLOOD FLOW SIMULATIONS IN ELASTIC VESSELS USING A PHYSICS-INFORMED NEURAL NETWORK

被引:2
|
作者
Zhang, Han [1 ,2 ]
Chan, Raymond H. [2 ]
Tai, Xue-cheng [3 ]
机构
[1] City Univ Hong Kong, Dept Math, Hong Kong, Peoples R China
[2] Hong Kong Ctr Cerebro Cardiovasc Hlth Engn, Hong Kong, Peoples R China
[3] Norwegian Res Ctr NORCE, Bergen, Norway
关键词
Key words. fluid-structure interaction; physics-informed neural network; blood flow simulation; arbitrary Lagrangian--Eulerian; computational fluid dynamics; FLUID-STRUCTURE INTERACTION; DEEP LEARNING FRAMEWORK; PRESSURE WIRE; RESERVE; HEMODYNAMICS;
D O I
10.1137/23M1622696
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Investigating blood flow in the cardiovascular system is crucial for assessing cardiovascular health. Computational approaches offer some noninvasive alternatives to measure blood flow dynamics. Numerical simulations based on traditional methods such as finite-element and other numerical discretizations have been extensively studied and have yielded excellent results. However, adapting these methods to real-life simulations remains a complex task. In this paper, we propose a method that offers flexibility and can efficiently handle real-life simulations. We suggest utilizing the physics-informed neural network to solve the Navier-Stokes equation in a deformable domain, specifically addressing the simulation of blood flow in elastic vessels. Our approach models blood flow using an incompressible, viscous Navier--Stokes equation in an arbitrary Lagrangian--Eulerian form. The mechanical model for the vessel wall structure is formulated by an equation of Newton's second law of momentum and linear elasticity to the force exerted by the fluid flow. Our method is a mesh-free approach that eliminates the need for discretization and meshing of the computational domain. This makes it highly efficient in solving simulations involving complex geometries. Additionally, with the availability of well-developed open-source machine learning framework packages and parallel modules, our method can easily be accelerated through GPU computing and parallel computing. To evaluate our approach, we conducted experiments on regular cylinder vessels as well as vessels with plaque on their walls. We compared our results to a solution calculated by finite element methods using a dense grid and small time steps, which we considered as the ground truth solution. We report the relative error and the time consumed to solve the problem, highlighting the advantages of our method.
引用
收藏
页码:C479 / C507
页数:29
相关论文
共 50 条
  • [41] Development of a data-driven simulation framework using physics-informed neural network
    Chae, Young Ho
    Kim, Hyeonmin
    Bang, Jungjin
    Seong, Poong Hyun
    ANNALS OF NUCLEAR ENERGY, 2023, 189
  • [42] Quantitative analysis of molecular transport in the extracellular space using physics-informed neural network
    Xie, Jiayi
    Li, Hongfeng
    Su, Shaoyi
    Cheng, Jin
    Cai, Qingrui
    Tan, Hanbo
    Zu, Lingyun
    Qu, Xiaobo
    Han, Hongbin
    COMPUTERS IN BIOLOGY AND MEDICINE, 2024, 171
  • [43] Reconstruction of hydrofoil cavitation flow based on the chain-style physics-informed neural network
    Ouyang, Hanqing
    Zhu, Zhicheng
    Chen, Kuangqi
    Tian, Beichen
    Huang, Biao
    Hao, Jia
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2023, 119
  • [44] Geophysical Frequency Domain Electromagnetic Field Simulation Using Physics-Informed Neural Network
    Wang, Bochen
    Guo, Zhenwei
    Liu, Jianxin
    Wang, Yanyi
    Xiong, Fansheng
    MATHEMATICS, 2024, 12 (23)
  • [45] Leveraging physics-informed neural computing for transport simulations of nuclear fusion plasmas
    Seo, J.
    Kim, I. H.
    Nam, H.
    NUCLEAR ENGINEERING AND TECHNOLOGY, 2024, 56 (12) : 5396 - 5404
  • [46] Physics-informed neural networks in the recreation of hydrodynamic simulations from dark matter
    Dai, Zhenyu
    Moews, Ben
    Vilalta, Ricardo
    Dave, Romeel
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2024, 527 (02) : 3381 - 3394
  • [47] 1-D coupled surface flow and transport equations revisited via the physics-informed neural network approach
    Niu, Jie
    Xu, Wei
    Qiu, Han
    Li, Shan
    Dong, Feifei
    JOURNAL OF HYDROLOGY, 2023, 625
  • [48] Gradient auxiliary physics-informed neural network for nonlinear biharmonic equation
    Liu, Yu
    Ma, Wentao
    ENGINEERING ANALYSIS WITH BOUNDARY ELEMENTS, 2023, 157 : 272 - 282
  • [49] A Physics-Informed Neural Network for the Prediction of Unmanned Surface Vehicle Dynamics
    Xu, Peng-Fei
    Han, Chen-Bo
    Cheng, Hong-Xia
    Cheng, Chen
    Ge, Tong
    JOURNAL OF MARINE SCIENCE AND ENGINEERING, 2022, 10 (02)
  • [50] Physics-informed neural network for nonlinear analysis of cable net structures
    Mai, Dai D.
    Bao, Tri Diep
    Lam, Thanh-Danh
    Mai, Hau T.
    ADVANCES IN ENGINEERING SOFTWARE, 2024, 196