A MESHLESS SOLVER FOR BLOOD FLOW SIMULATIONS IN ELASTIC VESSELS USING A PHYSICS-INFORMED NEURAL NETWORK

被引:2
|
作者
Zhang, Han [1 ,2 ]
Chan, Raymond H. [2 ]
Tai, Xue-cheng [3 ]
机构
[1] City Univ Hong Kong, Dept Math, Hong Kong, Peoples R China
[2] Hong Kong Ctr Cerebro Cardiovasc Hlth Engn, Hong Kong, Peoples R China
[3] Norwegian Res Ctr NORCE, Bergen, Norway
关键词
Key words. fluid-structure interaction; physics-informed neural network; blood flow simulation; arbitrary Lagrangian--Eulerian; computational fluid dynamics; FLUID-STRUCTURE INTERACTION; DEEP LEARNING FRAMEWORK; PRESSURE WIRE; RESERVE; HEMODYNAMICS;
D O I
10.1137/23M1622696
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Investigating blood flow in the cardiovascular system is crucial for assessing cardiovascular health. Computational approaches offer some noninvasive alternatives to measure blood flow dynamics. Numerical simulations based on traditional methods such as finite-element and other numerical discretizations have been extensively studied and have yielded excellent results. However, adapting these methods to real-life simulations remains a complex task. In this paper, we propose a method that offers flexibility and can efficiently handle real-life simulations. We suggest utilizing the physics-informed neural network to solve the Navier-Stokes equation in a deformable domain, specifically addressing the simulation of blood flow in elastic vessels. Our approach models blood flow using an incompressible, viscous Navier--Stokes equation in an arbitrary Lagrangian--Eulerian form. The mechanical model for the vessel wall structure is formulated by an equation of Newton's second law of momentum and linear elasticity to the force exerted by the fluid flow. Our method is a mesh-free approach that eliminates the need for discretization and meshing of the computational domain. This makes it highly efficient in solving simulations involving complex geometries. Additionally, with the availability of well-developed open-source machine learning framework packages and parallel modules, our method can easily be accelerated through GPU computing and parallel computing. To evaluate our approach, we conducted experiments on regular cylinder vessels as well as vessels with plaque on their walls. We compared our results to a solution calculated by finite element methods using a dense grid and small time steps, which we considered as the ground truth solution. We report the relative error and the time consumed to solve the problem, highlighting the advantages of our method.
引用
收藏
页码:C479 / C507
页数:29
相关论文
共 50 条
  • [31] PHYSICS-INFORMED NEURAL NETWORK FOR INVERSE HEAT CONDUCTION PROBLEM
    Qian, Weijia
    Hui, Xin
    Wang, Bosen
    Zhang, Zongwei
    Lin, Yuzhen
    Yang, Siheng
    HEAT TRANSFER RESEARCH, 2023, 54 (04) : 65 - 76
  • [32] Physics-Informed Neural Networks for AC Optimal Power Flow
    Nellikkath, Rahul
    Chatzivasileiadis, Spyros
    ELECTRIC POWER SYSTEMS RESEARCH, 2022, 212
  • [33] Sensitivity analysis using Physics-informed neural networks
    Hanna, John M.
    Aguado, Jose, V
    Comas-Cardona, Sebastien
    Askri, Ramzi
    Borzacchiello, Domenico
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2024, 135
  • [34] Physics-Informed Neural Networks for Prediction of a Flow-Induced Vibration Cylinder
    Yin, Guang
    Janocha, Marek Jan
    Ong, Muk Chen
    JOURNAL OF OFFSHORE MECHANICS AND ARCTIC ENGINEERING-TRANSACTIONS OF THE ASME, 2024, 146 (06):
  • [35] Application of physics-informed neural network in the analysis of hydrodynamic lubrication
    Yang Zhao
    Liang Guo
    Patrick Pat Lam Wong
    Friction, 2023, 11 : 1253 - 1264
  • [36] Initialization-enhanced physics-informed neural network with domain decomposition (IDPINN)
    Si, Chenhao
    Yan, Ming
    JOURNAL OF COMPUTATIONAL PHYSICS, 2025, 530
  • [37] Application of physics-informed neural network in the analysis of hydrodynamic lubrication
    Zhao, Yang
    Guo, Liang
    Wong, Patrick Pat Lam
    FRICTION, 2023, 11 (07) : 1253 - 1264
  • [38] Physics-informed neural network classification framework for reliability analysis
    Shi, Yan
    Beer, Michael
    Expert Systems with Applications, 2024, 258
  • [39] Physics-Informed Graph Neural Networks to solve 1-D equations of blood flow
    Sen, Ahmet
    Ghajar-Rahimi, Elnaz
    Aguirre, Miquel
    Navarro, Laurent
    Goergen, Craig J.
    Avril, Stephane
    COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE, 2024, 257
  • [40] Physics-informed Neural Network for Solving Buckley-Leverett Equation of Plane Radial Flow
    Zang, Jianpeng
    Song, Yizhuo
    Bai, Junting
    Zhang, Kai
    Wang, Jian
    Ablameyko, Sergey, V
    2024 6TH INTERNATIONAL CONFERENCE ON DATA-DRIVEN OPTIMIZATION OF COMPLEX SYSTEMS, DOCS 2024, 2024, : 39 - 44