State-of-health estimation for lithium-ion batteries based on Kullback-Leibler divergence and a retentive network☆

被引:1
|
作者
Chen, Guanxu [1 ,2 ]
Yang, Fangfang [1 ,2 ]
Peng, Weiwen [1 ,2 ]
Fan, Yuqian [3 ]
Lyu, Ximin [1 ,2 ]
机构
[1] Sun Yat Sen Univ, Sch Intelligent Syst Engn, Shenzhen Campus, Guangzhou 518107, Guangdong, Peoples R China
[2] Sun Yat Sen Univ, Sch Intelligent Syst Engn, Guangzhou, Guangdong, Peoples R China
[3] Henan Inst Sci & Technol, Sch Comp Sci & Technol, Xinxiang 453003, Peoples R China
基金
中国国家自然科学基金;
关键词
Lithium-ion battery; Kullback-Leibler divergence; Retentive network; State-of-health estimation; INCREMENTAL CAPACITY ANALYSIS; ON-BOARD STATE; ENTROPY; CHARGE; CELLS;
D O I
10.1016/j.apenergy.2024.124266
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Accurate state-of-health (SOH) estimation is crucial for the lithium-ion battery industry, as it underpins the safety, durability, and reliability of lithium-ion batteries. Currently, most researchers use various methods of health indicator (HI) extraction for the SOH estimation of batteries. However, these methods may require certain expertise and prior knowledge to achieve accurate modeling, being affected by measurement noise and other factors. To solve the abovementioned problems, three Kullback-Leibler (KL) divergence features based on partial voltage sequences are proposed as new HIs that are independent of prior knowledge and strongly correlated with SOH. Moreover, a modified retentive network is proposed to enhance SOH estimation accuracy and better utilize HIs than traditional deep learning methods, which have high training costs and insufficient accuracy. To ensure consistent extraction of KL divergence features across various experimental conditions and time intervals, a B-spline algorithm is utilized for interpolation. The effectiveness of the proposed method is validated through analysis of Pearson correlation coefficients and experiments conducted in four dimensions. Additionally, the potential of using the proposed method to compress data on the cloud-side is explored.
引用
收藏
页数:11
相关论文
共 50 条
  • [41] Improving state-of-health estimation for lithium-ion batteries via unlabeled charging data
    Lin, Chuanping
    Xu, Jun
    Mei, Xuesong
    ENERGY STORAGE MATERIALS, 2023, 54 : 85 - 97
  • [42] State of Health Estimation of Lithium-Ion Batteries Based on Dual Charging State
    Lu D.
    Chen Z.
    Shanghai Jiaotong Daxue Xuebao/Journal of Shanghai Jiaotong University, 2022, 56 (03): : 342 - 352
  • [43] Online state-of-health estimation of lithium-ion batteries using Dynamic Bayesian Networks
    He, Zhiwei
    Gao, Mingyu
    Ma, Guojin
    Liu, Yuanyuan
    Chen, Sanxin
    JOURNAL OF POWER SOURCES, 2014, 267 : 576 - 583
  • [44] State of health estimation of lithium-ion batteries based on the regional triangle
    Zhang, Ya
    Cai, Yongxiang
    Liu, Wei
    Dou, Zhenlan
    Yao, Bin
    Zhang, Bide
    Liao, Qiangqiang
    Fu, Zaiguo
    Cheng, Zhiyuan
    JOURNAL OF ENERGY STORAGE, 2023, 69
  • [45] Partial Charging Method for Lithium-Ion Battery State-of-Health Estimation
    Schaltz, Erik
    Stroe, Daniel-Ioan
    Norregaard, Kjeld
    Johnsen, Bjarne
    Christensen, Andreas
    2019 FOURTEENTH INTERNATIONAL CONFERENCE ON ECOLOGICAL VEHICLES AND RENEWABLE ENERGIES (EVER), 2019,
  • [46] State-of-health estimation for lithium-ion batteries based on historical dependency of charging data and ensemble SVR
    Guo, Yongfang
    Huang, Kai
    Yu, Xiangyuan
    Wang, Yashuang
    ELECTROCHIMICA ACTA, 2022, 428
  • [47] State-of-health estimation for lithium-ion batteries based on partial charging segment and stacking model fusion
    Xu, Jinli
    Liu, Baolei
    Zhang, Guangya
    Zhu, Jiwei
    ENERGY SCIENCE & ENGINEERING, 2023, 11 (01) : 383 - 397
  • [48] An Estimation Method of Relative State-of-Health for Lithium-Ion Batteries Using Morlet Wavelet
    Zhao Y.
    Xu J.
    Wang H.
    Mei X.
    Hsi-An Chiao Tung Ta Hsueh/Journal of Xi'an Jiaotong University, 2019, 53 (12): : 97 - 103and130
  • [49] A reliable data-driven state-of-health estimation model for lithium-ion batteries in electric vehicles
    Zhang, Chaolong
    Zhao, Shaishai
    Yang, Zhong
    Chen, Yuan
    FRONTIERS IN ENERGY RESEARCH, 2022, 10
  • [50] State-of-health estimation and remaining useful life prediction for lithium-ion batteries based on an improved particle filter algorithm
    Hong, Shiding
    Qin, Chaokui
    Lai, Xin
    Meng, Zheng
    Dai, Haifeng
    JOURNAL OF ENERGY STORAGE, 2023, 64