State-of-health estimation for lithium-ion batteries based on Kullback-Leibler divergence and a retentive network☆

被引:1
|
作者
Chen, Guanxu [1 ,2 ]
Yang, Fangfang [1 ,2 ]
Peng, Weiwen [1 ,2 ]
Fan, Yuqian [3 ]
Lyu, Ximin [1 ,2 ]
机构
[1] Sun Yat Sen Univ, Sch Intelligent Syst Engn, Shenzhen Campus, Guangzhou 518107, Guangdong, Peoples R China
[2] Sun Yat Sen Univ, Sch Intelligent Syst Engn, Guangzhou, Guangdong, Peoples R China
[3] Henan Inst Sci & Technol, Sch Comp Sci & Technol, Xinxiang 453003, Peoples R China
基金
中国国家自然科学基金;
关键词
Lithium-ion battery; Kullback-Leibler divergence; Retentive network; State-of-health estimation; INCREMENTAL CAPACITY ANALYSIS; ON-BOARD STATE; ENTROPY; CHARGE; CELLS;
D O I
10.1016/j.apenergy.2024.124266
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Accurate state-of-health (SOH) estimation is crucial for the lithium-ion battery industry, as it underpins the safety, durability, and reliability of lithium-ion batteries. Currently, most researchers use various methods of health indicator (HI) extraction for the SOH estimation of batteries. However, these methods may require certain expertise and prior knowledge to achieve accurate modeling, being affected by measurement noise and other factors. To solve the abovementioned problems, three Kullback-Leibler (KL) divergence features based on partial voltage sequences are proposed as new HIs that are independent of prior knowledge and strongly correlated with SOH. Moreover, a modified retentive network is proposed to enhance SOH estimation accuracy and better utilize HIs than traditional deep learning methods, which have high training costs and insufficient accuracy. To ensure consistent extraction of KL divergence features across various experimental conditions and time intervals, a B-spline algorithm is utilized for interpolation. The effectiveness of the proposed method is validated through analysis of Pearson correlation coefficients and experiments conducted in four dimensions. Additionally, the potential of using the proposed method to compress data on the cloud-side is explored.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] State-of-Health Estimation Based on Differential Temperature for Lithium Ion Batteries
    Tian, Jinpeng
    Xiong, Rui
    Shen, Weixiang
    IEEE TRANSACTIONS ON POWER ELECTRONICS, 2020, 35 (10) : 10363 - 10373
  • [2] Exploration of Imbalanced Regression in state-of-health estimation of Lithium-ion batteries
    Zhao, Zhibin
    Liu, Bingchen
    Wang, Fujin
    Zheng, Shiyu
    Yu, Qiuyu
    Zhai, Zhi
    Chen, Xuefeng
    JOURNAL OF ENERGY STORAGE, 2025, 105
  • [3] A Review of State-of-health Estimation of Lithium-ion Batteries: Experiments and Data
    Zhou, Ruomei
    Fu, Shasha
    Peng, Weiwen
    2020 ASIA-PACIFIC INTERNATIONAL SYMPOSIUM ON ADVANCED RELIABILITY AND MAINTENANCE MODELING (APARM), 2020,
  • [4] Online State-of-Health Estimation for NMC Lithium-Ion Batteries Using an Observer Structure
    Neunzling, Jan
    Winter, Hanno
    Henriques, David
    Fleckenstein, Matthias
    Markus, Torsten
    BATTERIES-BASEL, 2023, 9 (10):
  • [5] State-of-Health Estimation for Lithium-Ion Batteries in Hybrid Electric Vehicles-A Review
    Zhang, Jianyu
    Li, Kang
    ENERGIES, 2024, 17 (22)
  • [6] State-of-health estimation of lithium-ion batteries based on semi-supervised transfer component analysis
    Li, Yuanyuan
    Sheng, Hanmin
    Cheng, Yuhua
    Stroe, Daniel-Ioan
    Teodorescu, Remus
    APPLIED ENERGY, 2020, 277
  • [7] Domain generalization-based state-of-health estimation of lithium-ion batteries
    Chen, Liping
    Bao, Xinyuan
    Lopes, Antonio M.
    Li, Xin
    Kong, Huifang
    Chai, Yi
    Li, Penghua
    JOURNAL OF POWER SOURCES, 2024, 610
  • [8] Feature parameter extraction and intelligent estimation of the State-of-Health of lithium-ion batteries
    Deng, Yuanwang
    Ying, Hejie
    Jiaqiang, E.
    Zhu, Hao
    Wei, Kexiang
    Chen, Jingwei
    Zhang, Feng
    Liao, Gaoliang
    ENERGY, 2019, 176 : 91 - 102
  • [9] Research on State-of-Health Estimation for Lithium-Ion Batteries Based on the Charging Phase
    Du, Changqing
    Qi, Rui
    Ren, Zhong
    Xiao, Di
    ENERGIES, 2023, 16 (03)
  • [10] A Temporal Fusion Memory Network-Based Method for State-of-Health Estimation of Lithium-Ion Batteries
    Chen, Kang
    Wang, Dandan
    Guo, Wenwen
    BATTERIES-BASEL, 2024, 10 (08):