On a p(x)-Kirchhoff-type Equation with Singular and Superlinear Nonlinearities

被引:1
|
作者
Avci, Mustafa [1 ]
机构
[1] Athabasca Univ, Fac Sci & Technol, Appl Math, 1 Univ Dr, Athabasca, AB T9S 3A3, Canada
基金
芬兰科学院;
关键词
p(x)-Kirchhoff equation; Ekeland's variational principle; Constrained minimization; Strong Singularity; Superlinear nonlinearity; BOUNDARY-VALUE PROBLEM; POSITIVE SOLUTIONS; VARIABLE EXPONENT; ELLIPTIC PROBLEMS; MULTIPLICITY; EXISTENCE; SPACES;
D O I
10.1007/s12591-024-00702-0
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In the present paper, we study a p(x)-Kirchhoff-type equation with combined effects of variable singular and superlinear nonlinearities. Using the Ekeland's variational principle and a constrained minimization approach, we show the existence and uniqueness of a posi-tive solution for the case variable singularity beta(x) assumes its values in the interval (1,infinity) , i.e., the case where beta(x) causes a strong singularity.
引用
收藏
页数:23
相关论文
共 50 条
  • [41] Multiple solutions for a Kirchhoff-type problem involving the p(x)-Laplacian operator
    Cammaroto, F.
    Vilasi, L.
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2011, 74 (05) : 1841 - 1852
  • [42] Existence of solution for a p(x)-Kirchhoff type with singular weights
    Zaki, A.
    Hamydy, A.
    Tsouli, N.
    ADVANCED STUDIES-EURO-TBILISI MATHEMATICAL JOURNAL, 2022, : 191 - 202
  • [43] p(x, <middle dot>)-Kirchhoff type problem involving the fractional p(x)-Laplacian operator with discontinuous nonlinearities
    El Hammar, Hassnae
    El Ouaarabi, Mohamed
    Allalou, Chakir
    Melliani, Said
    FILOMAT, 2024, 38 (06) : 2109 - 2125
  • [44] Multiplicity of Solutions for Kirchhoff-Type Problem with Two-Superlinear Potentials
    Liu, Guanggang
    Shi, Shaoyun
    Wei, Yucheng
    BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2019, 42 (04) : 1657 - 1673
  • [45] ON SPECTRAL ASYMPTOTICS AND BIFURCATION FOR SOME ELLIPTIC EQUATIONS OF KIRCHHOFF-TYPE WITH ODD SUPERLINEAR TERM
    Yan, Baoqiang
    O'Regan, Donal
    Agarwal, Ravi P.
    JOURNAL OF APPLIED ANALYSIS AND COMPUTATION, 2018, 8 (02): : 509 - 523
  • [46] Existence results for Kirchhoff-type superlinear problems involving the fractional Laplacian
    Zhang Binlin
    Radulescu, Vicentiu D.
    Wang, Li
    PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2019, 149 (04) : 1061 - 1081
  • [47] Fractional Kirchhoff-type equation with Hardy-Littlewood-Sobolev critical exponent
    Su, Yu
    Chen, Haibo
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2019, 78 (06) : 2063 - 2082
  • [48] A Uniqueness Result for Strong Singular Kirchhoff-Type Fractional Laplacian Problems
    Wang, Li
    Cheng, Kun
    Zhang, Binlin
    APPLIED MATHEMATICS AND OPTIMIZATION, 2021, 83 (03) : 1859 - 1875
  • [49] Elliptic anisotropic Kirchhoff-type problems with singular term
    Massar, Mohammed
    JOURNAL OF ELLIPTIC AND PARABOLIC EQUATIONS, 2023, 9 (01) : 419 - 440
  • [50] On a Kirchhoff Singular p(x)-Biharmonic Problem with Navier Boundary Conditions
    Kefi, Khaled
    Saoudi, Kamel
    Al-Shomrani, Mohammed Mosa
    ACTA APPLICANDAE MATHEMATICAE, 2020, 170 (01) : 661 - 676