On a p(x)-Kirchhoff-type Equation with Singular and Superlinear Nonlinearities

被引:1
|
作者
Avci, Mustafa [1 ]
机构
[1] Athabasca Univ, Fac Sci & Technol, Appl Math, 1 Univ Dr, Athabasca, AB T9S 3A3, Canada
基金
芬兰科学院;
关键词
p(x)-Kirchhoff equation; Ekeland's variational principle; Constrained minimization; Strong Singularity; Superlinear nonlinearity; BOUNDARY-VALUE PROBLEM; POSITIVE SOLUTIONS; VARIABLE EXPONENT; ELLIPTIC PROBLEMS; MULTIPLICITY; EXISTENCE; SPACES;
D O I
10.1007/s12591-024-00702-0
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In the present paper, we study a p(x)-Kirchhoff-type equation with combined effects of variable singular and superlinear nonlinearities. Using the Ekeland's variational principle and a constrained minimization approach, we show the existence and uniqueness of a posi-tive solution for the case variable singularity beta(x) assumes its values in the interval (1,infinity) , i.e., the case where beta(x) causes a strong singularity.
引用
收藏
页数:23
相关论文
共 50 条
  • [31] Infinitely many non-negative solutions for a p(x)-Kirchhoff-type problem with Dirichlet boundary condition
    Dai, Guowei
    Wei, Jian
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2010, 73 (10) : 3420 - 3430
  • [32] Singular p(x)-Laplacian equation with application to boundary layer theory
    Avci, Mustafa
    APPLICABLE ANALYSIS, 2025,
  • [34] Nodal solution for Kirchhoff-type problems with concave-convex nonlinearities
    Chen, Bin
    Ou, Zeng-Qi
    COMPLEX VARIABLES AND ELLIPTIC EQUATIONS, 2021, 66 (09) : 1534 - 1549
  • [35] Sign-changing solutions for Kirchhoff-type equations with indefinite nonlinearities
    Cui, Zhiying
    Shuai, Wei
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2023, 74 (04):
  • [36] Nehari-Pohozaev-type ground state solutions of Kirchhoff-type equation with singular potential and critical exponent
    Su, Yu
    Liu, Senli
    CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 2022, 65 (02): : 473 - 495
  • [37] The Brezis-Nirenberg result for the Kirchhoff-type equation in dimension four
    Liao, Jia-Feng
    Ke, Xiao-Feng
    Liu, Jiu
    Tang, Chun-Lei
    APPLICABLE ANALYSIS, 2018, 97 (15) : 2720 - 2726
  • [38] Multiple solutions for a modified Kirchhoff-type equation in RN
    Feng, Zong-Hong
    Wu, Xian
    Li, Hong-Xu
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2015, 38 (04) : 708 - 725
  • [39] Multiple Solutions For A Class Of p(x)-Kirchhoff-Type Equations
    Heidarkhani, Shapour
    Ghobadi, Ahmad
    Avci, Mustafa
    APPLIED MATHEMATICS E-NOTES, 2022, 22 : 160 - 168
  • [40] A study of a Kirchhoff-type p(x)-triharmonic problem involving two parameters
    Han, Xiumei
    Naghizadeh, Zohreh
    Zhang, Binlin
    QUAESTIONES MATHEMATICAE, 2025, 48 (01) : 49 - 62