A new method based on generative adversarial networks for multivariate time series prediction

被引:0
|
作者
Qin, Xiwen [1 ]
Shi, Hongyu [1 ]
Dong, Xiaogang [1 ]
Zhang, Siqi [1 ]
机构
[1] Changchun Univ Technol, Sch Math & Stat, Changchun 130012, Peoples R China
基金
中国国家自然科学基金;
关键词
bidirectional gated recurrent unit; convolutional neural network; generative adversarial networks; time series; MODEL; GRU;
D O I
10.1111/exsy.13700
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Multivariate time series have more complex and high-dimensional characteristics, which makes it difficult to analyze and predict the data accurately. In this paper, a new multivariate time series prediction method is proposed. This method is a generative adversarial networks (GAN) method based on Fourier transform and bi-directional gated recurrent unit (Bi-GRU). First, the Fourier transform is utilized to extend the data features, which helps the GAN to better learn the distributional features of the original data. Second, in order to guide the model to fully learn the distribution of the original time series data, Bi-GRU is introduced as the generator of GAN. To solve the problems of mode collapse and gradient vanishing that exist in GAN, Wasserstein distance is used as the loss function of GAN. Finally, the proposed method is used for the prediction of air quality, stock price and RMB exchange rate. The experimental results show that the model can effectively predict the trend of the time series compared with the other nine baseline models. It significantly improves the accuracy and flexibility of multivariate time series forecasting and provides new ideas and methods for accurate time series forecasting in industrial, financial and environmental fields.
引用
收藏
页数:20
相关论文
共 50 条
  • [41] Variational Autoencoders and Generative Adversarial Networks for Multivariate Scenario Generation
    Michele Carbonera
    Michele Ciavotta
    Enza Messina
    Data Science for Transportation, 2024, 6 (3):
  • [42] Stock Market Prediction Based on Generative Adversarial Network
    Zhang, Kang
    Zhong, Guoqiang
    Dong, Junyu
    Wang, Shengke
    Wang, Yong
    2018 INTERNATIONAL CONFERENCE ON IDENTIFICATION, INFORMATION AND KNOWLEDGE IN THE INTERNET OF THINGS, 2019, 147 : 400 - 406
  • [43] Multiple convolutional neural networks for multivariate time series prediction
    Wang, Kang
    Li, Kenli
    Zhou, Liqian
    Hu, Yikun
    Cheng, Zhongyao
    Liu, Jing
    Chen, Cen
    NEUROCOMPUTING, 2019, 360 : 107 - 119
  • [44] Application of Neural Networks on multivariate time series modeling and prediction
    Han, Min
    Fan, Mingming
    2006 AMERICAN CONTROL CONFERENCE, VOLS 1-12, 2006, 1-12 : 3698 - +
  • [45] Neural networks generative models for time series
    Gatta, Federico
    Giampaolo, Fabio
    Prezioso, Edoardo
    Mei, Gang
    Cuomo, Salvatore
    Piccialli, Francesco
    JOURNAL OF KING SAUD UNIVERSITY-COMPUTER AND INFORMATION SCIENCES, 2022, 34 (10) : 7920 - 7939
  • [46] A Services Classification Method Based on Heterogeneous Information Networks and Generative Adversarial Networks
    Xie, Xiang
    Liu, Jianxun
    Cao, Buqing
    Peng, Mi
    Kang, Guosheng
    Wen, Yiping
    Fletcher, Kenneth K.
    INTERNATIONAL JOURNAL OF WEB SERVICES RESEARCH, 2023, 20 (01)
  • [47] Stochastic generation of runoff series for multiple reservoirs based on generative adversarial networks
    Ma, Yufei
    Zhong, Ping-an
    Xu, Bin
    Zhu, Feilin
    Yang, Luhua
    Wang, Han
    Lu, Qingwen
    JOURNAL OF HYDROLOGY, 2022, 605
  • [48] Time Series Forecasting with Missing Data Using Generative Adversarial Networks and Bayesian Inference
    Li, Xiaoou
    INFORMATION, 2024, 15 (04)
  • [49] Differentially Private Generative Adversarial Networks for Time Series, Continuous, and Discrete Open Data
    Frigerio, Lorenzo
    de Oliveira, Anderson Santana
    Gomez, Laurent
    Duverger, Patrick
    ICT SYSTEMS SECURITY AND PRIVACY PROTECTION, SEC 2019, 2019, 562 : 151 - 164
  • [50] Data-driven modeling of noise time series with convolutional generative adversarial networks *
    Wunderlich, Adam
    Sklar, Jack
    MACHINE LEARNING-SCIENCE AND TECHNOLOGY, 2023, 4 (03):