Nonreciprocal Bundle Emissions of Quantum Entangled Pairs

被引:10
作者
Bin, Qian [1 ,2 ,3 ,4 ]
Jing, Hui [5 ,6 ]
Wu, Ying [1 ,2 ,3 ]
Nori, Franco [7 ,8 ,9 ]
Lue, Xin-You [1 ,2 ,3 ]
机构
[1] Huazhong Univ Sci & Technol, Sch Phys, Wuhan 430074, Peoples R China
[2] Huazhong Univ Sci & Technol, Inst Quantum Sci & Engn, Wuhan 430074, Peoples R China
[3] Wuhan Inst Quantum Technol, Wuhan 430074, Peoples R China
[4] Sichuan Univ, Coll Phys, Chengdu 610065, Peoples R China
[5] Hunan Normal Univ, Minist Educ, Key Lab Low Dimens Quantum Struct & Quantum Contro, Dept Phys, Changsha 410081, Peoples R China
[6] Hunan Normal Univ, Synerget Innovat Ctr Quantum Effects & Applicat, Changsha 410081, Peoples R China
[7] RIKEN, Theoret Quantum Phys Lab, Cluster Pioneering Res, Wako, Saitama 3510198, Japan
[8] RIKEN, Ctr Quantum Comp, Saitama 3510198, Japan
[9] Univ Michigan, Phys Dept, Ann Arbor, MI 48109 USA
基金
日本科学技术振兴机构; 中国国家自然科学基金; 国家重点研发计划;
关键词
NON-RECIPROCITY; SINGLE PHOTONS; TRAPPED ATOM; FLUORESCENCE; PROPAGATION; REALIZATION; STATES; WAVE;
D O I
10.1103/PhysRevLett.133.043601
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Realizing precise control over multiquanta emission is crucial for quantum information processing, especially when integrated with advanced techniques of manipulating quantum states. Here, by spinning the resonator to induce the Sagnac effect, we can obtain nonreciprocal photon-phonon and photon-magnon superRabi oscillations under conditions of optically driving resonance transitions. Opening dissipative channels for such super-Rabi oscillations enables the realization of directional bundle emissions of entangled photon- phonon pairs and photon-magnon pairs by transferring the pure multiquanta state to a bundled multiquanta outside of the system. This nonreciprocal emission is a flexible switch that can be controlled with precision, and simultaneous emissions of different entangled pairs (such as photon-phonon or photon-magnon pairs) can even emerge but in opposite directions by driving the resonator from different directions. This ability to flexibly manipulate the system allows us to achieve directional entangled multiquanta emitters, and has also potential applications for building hybrid quantum networks and on-chip quantum communications.
引用
收藏
页数:9
相关论文
共 146 条
  • [1] Entanglement sharing: From qubits to Gaussian states
    Adesso, Gerardo
    Illuminati, Fabrizio
    [J]. INTERNATIONAL JOURNAL OF QUANTUM INFORMATION, 2006, 4 (03) : 383 - 393
  • [2] Alton DJ, 2011, NAT PHYS, V7, P159, DOI [10.1038/nphys1837, 10.1038/NPHYS1837]
  • [3] Entanglement in many-body systems
    Amico, Luigi
    Fazio, Rosario
    Osterloh, Andreas
    Vedral, Vlatko
    [J]. REVIEWS OF MODERN PHYSICS, 2008, 80 (02) : 517 - 576
  • [4] Observation of strong coupling between one atom and a monolithic microresonator
    Aoki, Takao
    Dayan, Barak
    Wilcut, E.
    Bowen, W. P.
    Parkins, A. S.
    Kippenberg, T. J.
    Vahala, K. J.
    Kimble, H. J.
    [J]. NATURE, 2006, 443 (7112) : 671 - 674
  • [5] Cavity optomechanics
    Aspelmeyer, Markus
    Kippenberg, Tobias J.
    Marquardt, Florian
    [J]. REVIEWS OF MODERN PHYSICS, 2014, 86 (04) : 1391 - 1452
  • [6] Nonreciprocal lasing in topological cavities of arbitrary geometries
    Bahari, Babak
    Ndao, Abdoulaye
    Vallini, Felipe
    El Amili, Abdelkrim
    Fainman, Yeshaiahu
    Kante, Boubacar
    [J]. SCIENCE, 2017, 358 (6363) : 636 - 639
  • [7] Manipulating the Flow of Thermal Noise in Quantum Devices
    Barzanjeh, Shabir
    Aquilina, Matteo
    Xuereb, Andre
    [J]. PHYSICAL REVIEW LETTERS, 2018, 120 (06)
  • [8] Observation of Asymmetric Transport in Structures with Active Nonlinearities
    Bender, N.
    Factor, S.
    Bodyfelt, J. D.
    Ramezani, H.
    Christodoulides, D. N.
    Ellis, F. M.
    Kottos, T.
    [J]. PHYSICAL REVIEW LETTERS, 2013, 110 (23)
  • [9] Spin Current Cross-Correlations as a Probe of Magnon Coherence
    Bender, Scott A.
    Kamra, Akashdeep
    Belzig, Wolfgang
    Duine, Rembert A.
    [J]. PHYSICAL REVIEW LETTERS, 2019, 122 (18)
  • [10] Nonreciprocal reconfigurable microwave optomechanical circuit
    Bernier, N. R.
    Toth, L. D.
    Koottandavida, A.
    Ioannou, M. A.
    Malz, D.
    Nunnenkamp, A.
    Feofanov, A. K.
    Kippenberg, T. J.
    [J]. NATURE COMMUNICATIONS, 2017, 8