Solar-driven interfacial evaporation on balsa for shale gas wastewater treatment: Analysis of system efficiency and water safety

被引:0
|
作者
Zhong, Shiyu [1 ,2 ]
Song, Zhaoyang [3 ]
Xie, Wancen [4 ]
Guo, Yujie [1 ,2 ]
Shu, Jingyu [1 ,2 ]
Li, Xin [1 ,2 ]
Chen, Guijing [1 ,2 ]
Ren, Xiaoyu [1 ,2 ]
Wang, Zicheng [1 ,2 ]
Hao, Xia [1 ]
Liu, Baicang [1 ,2 ]
机构
[1] Sichuan Univ, Inst New Energy & Low Carbon Technol, Coll Architecture & Environm, State Key Lab Hydraul & Mt River Engn, Chengdu 610207, Sichuan, Peoples R China
[2] Sichuan Univ, Yibin Inst Ind Technol, Yibin Pk,Sect 2,Lingang Ave, Yibin 644000, Sichuan, Peoples R China
[3] Wageningen Univ & Res, Dept Environm Sci, NL-6708 PB Wageningen, Netherlands
[4] Sichuan Agr Univ, Sch Civil Engn, Chengdu 611830, Sichuan, Peoples R China
基金
中国国家自然科学基金;
关键词
Shale gas wastewater; Solar-driven interfacial evaporation; Desalination; Organic chemicals; Safety analysis; FLOWBACK; MEMBRANE; REUSE; WOOD; TECHNOLOGIES; POLLUTANTS;
D O I
10.1016/j.cej.2024.154623
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
The volume of shale gas wastewater (SGW) surges notably with shale gas extraction booms in China. Solar driven interfacial evaporation technology (SIE), which presents significant advantages in environmentally-friendly and low-cost treatment of high-salinity wastewater, shows potential in SGW treatment. Herein, SIE technology based on balsa wood was introduced to treat SGW from the Sichuan Basin, and the system efficiency and condensate water safety were comprehensively explored. Under two sun intensity irritation, the evaporation rate of SGW reached 1.50 kg/(m2 center dot h) with the evaporation efficiency of over 50 %. To maintain a relatively consistent evaporation rate, the anti-scalant nitrilotriacetic acid was used and the evaporation rate reduced by only 0.15 kg/(m2 center dot h) within 8 h. Meanwhile, the SIE system showed remarkable total dissolved solids (TDS) removal rate exceeding 99 % of SGW. In addition, to ensure the safety of condensate water reuse, the transfer of hazardous organic compounds from raw to condensate water was comprehensively detected. It was found that volatile and semi-volatile organic compounds (VOCs and SVOCs) which were of strong responses in raw SGW exhibited much lower responses or cannot be detected in condensate water, including diisobutyl phthalate, dimethylbenzylamine e and pyridine. The results indicate that SIE is capable of removing the hazardous organic compounds. Compounds of strong response in condensate, such as furfural and 2,6-dimethoxy-phenol, are considered as natural compounds in wood, which are degradable and show low impacts on environment. This study suggested a novel and low-cost approach to SGW treatment.
引用
收藏
页数:11
相关论文
共 50 条
  • [31] Recycling Graphite from Spent Lithium Batteries for Efficient Solar-Driven Interfacial Evaporation to Obtain Clean Water
    Han, Sheng-Jie
    Xu, Lei
    Liu, Pan
    Wu, Jia-Li
    Labiadh, Lazhar
    Fu, Ming-Lai
    Yuan, Baoling
    CHEMSUSCHEM, 2023, 16 (24)
  • [32] Flexible and robust nanofiber sponge with superior capacity to transport water for efficient and sustained solar-driven interfacial evaporation
    Yuan, Zhipeng
    Zhang, Xinen
    Zhang, Jing
    Zhao, Xinfu
    Liu, Sijia
    Yu, Shimo
    Liu, Xiaochan
    Yi, Xibin
    DESALINATION, 2023, 550
  • [33] Boosting adsorption of heavy metal ions in wastewater through solar-driven interfacial evaporation of chemically-treated carbonized wood
    Hou, Qiao
    Zhou, Haoyang
    Zhang, Wei
    Chang, Qing
    Yang, Jinlong
    Xue, Chaorui
    Hu, Shengliang
    SCIENCE OF THE TOTAL ENVIRONMENT, 2021, 759
  • [34] Growth of CuS nanowire on copper mesh for efficient solar-driven water evaporation and wastewater purification
    Jeong, Sohee
    Kim, Younghun
    JOURNAL OF INDUSTRIAL AND ENGINEERING CHEMISTRY, 2024, 137 : 491 - 502
  • [35] A fabric interpenetrating composite hydrospongels with permeability and evaporation enthalpy regulation for efficient solar-driven interfacial evaporation and water purification
    Xu, Bing
    Yao, Xingjie
    Zhang, Xinyu
    Chen, Feiyong
    Ma, Liang
    Fang, Shipeng
    Zhang, Xu
    Xu, Jingtao
    CHEMICAL ENGINEERING JOURNAL, 2025, 503
  • [36] Recent advances in solar-driven interfacial evaporation coupling systems: Energy conversion, water purification, and seawater resource extraction
    Lu, Xiaoyan
    Mu, Chunxia
    Liu, Yuxuan
    Wu, Lian
    Tong, Zhangfa
    Huang, Kelei
    NANO ENERGY, 2024, 120
  • [37] A Janus porous carbon nanotubes/poly (vinyl alcohol) composite evaporator for efficient solar-driven interfacial water evaporation
    Jian, Hongwei
    Qi, Qingbin
    Wang, Wei
    Yu, Dan
    SEPARATION AND PURIFICATION TECHNOLOGY, 2021, 264
  • [38] Efficient solar-driven interfacial water evaporation: Construction of facilely PVA/TA/GO gel copper foam evaporator
    Tan, Xinyan
    Yuan, Xin
    Sun, Yuqing
    Liu, Weimin
    Li, Jian
    JOURNAL OF ENVIRONMENTAL CHEMICAL ENGINEERING, 2024, 12 (06):
  • [39] Solar interfacial evaporation system and materials for water treatment and organic solvent purification
    Mao T.
    Li S.
    Huang L.
    Zhou C.
    Han K.
    Huagong Jinzhan/Chemical Industry and Engineering Progress, 2023, 42 (01): : 178 - 193
  • [40] Thermo-economic and environmental optimization of a solar-driven zero-liquid discharge system for shale gas wastewater desalination
    Onishi, Viviani C.
    Manesh, Mohammad H. Khoshgoftar
    Salcedo-Diaz, Raquel
    Ruiz-Femenia, Ruben
    Labarta, Juan A.
    Caballero, Jose A.
    DESALINATION, 2021, 511