Solar-driven interfacial evaporation on balsa for shale gas wastewater treatment: Analysis of system efficiency and water safety

被引:0
|
作者
Zhong, Shiyu [1 ,2 ]
Song, Zhaoyang [3 ]
Xie, Wancen [4 ]
Guo, Yujie [1 ,2 ]
Shu, Jingyu [1 ,2 ]
Li, Xin [1 ,2 ]
Chen, Guijing [1 ,2 ]
Ren, Xiaoyu [1 ,2 ]
Wang, Zicheng [1 ,2 ]
Hao, Xia [1 ]
Liu, Baicang [1 ,2 ]
机构
[1] Sichuan Univ, Inst New Energy & Low Carbon Technol, Coll Architecture & Environm, State Key Lab Hydraul & Mt River Engn, Chengdu 610207, Sichuan, Peoples R China
[2] Sichuan Univ, Yibin Inst Ind Technol, Yibin Pk,Sect 2,Lingang Ave, Yibin 644000, Sichuan, Peoples R China
[3] Wageningen Univ & Res, Dept Environm Sci, NL-6708 PB Wageningen, Netherlands
[4] Sichuan Agr Univ, Sch Civil Engn, Chengdu 611830, Sichuan, Peoples R China
基金
中国国家自然科学基金;
关键词
Shale gas wastewater; Solar-driven interfacial evaporation; Desalination; Organic chemicals; Safety analysis; FLOWBACK; MEMBRANE; REUSE; WOOD; TECHNOLOGIES; POLLUTANTS;
D O I
10.1016/j.cej.2024.154623
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
The volume of shale gas wastewater (SGW) surges notably with shale gas extraction booms in China. Solar driven interfacial evaporation technology (SIE), which presents significant advantages in environmentally-friendly and low-cost treatment of high-salinity wastewater, shows potential in SGW treatment. Herein, SIE technology based on balsa wood was introduced to treat SGW from the Sichuan Basin, and the system efficiency and condensate water safety were comprehensively explored. Under two sun intensity irritation, the evaporation rate of SGW reached 1.50 kg/(m2 center dot h) with the evaporation efficiency of over 50 %. To maintain a relatively consistent evaporation rate, the anti-scalant nitrilotriacetic acid was used and the evaporation rate reduced by only 0.15 kg/(m2 center dot h) within 8 h. Meanwhile, the SIE system showed remarkable total dissolved solids (TDS) removal rate exceeding 99 % of SGW. In addition, to ensure the safety of condensate water reuse, the transfer of hazardous organic compounds from raw to condensate water was comprehensively detected. It was found that volatile and semi-volatile organic compounds (VOCs and SVOCs) which were of strong responses in raw SGW exhibited much lower responses or cannot be detected in condensate water, including diisobutyl phthalate, dimethylbenzylamine e and pyridine. The results indicate that SIE is capable of removing the hazardous organic compounds. Compounds of strong response in condensate, such as furfural and 2,6-dimethoxy-phenol, are considered as natural compounds in wood, which are degradable and show low impacts on environment. This study suggested a novel and low-cost approach to SGW treatment.
引用
收藏
页数:11
相关论文
共 50 条
  • [21] Hybrid solar-driven interfacial evaporation systems: Beyond water production towards high solar energy utilization
    Ding, Tianpeng
    Zhou, Yi
    Ong, Wei Li
    Ho, Ghim Wei
    MATERIALS TODAY, 2021, 42 : 178 - 191
  • [22] Facile Synthesis of Vertically Arranged CNTs for Efficient Solar-Driven Interfacial Water Evaporation
    Su, Lifen
    Liu, Xiaoyu
    Li, Xu
    Yang, Bin
    Wu, Bin
    Xia, Ru
    Qian, Jiasheng
    Zhou, Jianhua
    Miao, Lei
    ACS OMEGA, 2022, 7 (50): : 47349 - 47356
  • [23] Mechanochemical synthesis and interfacial engineering of photothermal polymer composites for solar-driven water evaporation
    Kim, Jihyo
    Lee, Dongjun
    Cho, Wansu
    Yang, Beomjoo
    Jung, Jong Won
    Park, Chiyoung
    BULLETIN OF THE KOREAN CHEMICAL SOCIETY, 2023, 44 (08) : 653 - 657
  • [24] PTFE-based composite nanofiber membranes for solar-driven interfacial water evaporation
    Yu, Mengmeng
    Jiang, Guohua
    Demir, Muslum
    Sun, Yanfang
    Wang, Rui
    Liu, Tianqi
    MATERIALS TODAY COMMUNICATIONS, 2022, 32
  • [25] Review of the progress of solar-driven interfacial water evaporation (SIWE) toward a practical approach
    Srishti, Apurba
    Sinhamahapatra, Apurba
    Kumar, Aditya
    ENERGY ADVANCES, 2023, 2 (05): : 574 - 605
  • [26] Robust and multifunctional MXene/rGO composite aerogels toward highly efficient solar-driven interfacial evaporation and wastewater treatment
    Zhang, Guangfa
    Zhang, Yuekang
    Jiang, Jingxian
    SEPARATION AND PURIFICATION TECHNOLOGY, 2024, 347
  • [27] Solar-Driven Interfacial Water Evaporation Using Open-Porous PDMS Embedded with Carbon Nanoparticles
    Wang, Shuzhe
    Almenabawy, Sara M.
    Kherani, Nazir P.
    Leung, Siu Ning
    O'Brien, Paul G.
    ACS APPLIED ENERGY MATERIALS, 2020, 3 (04) : 3378 - 3386
  • [28] Macroporous 3D MXene architecture for solar-driven interfacial water evaporation
    Ju, Maomao
    Yang, Yawei
    Zhao, Jianqiu
    Yin, Xingtian
    Wu, Yutao
    Que, Wenxiu
    JOURNAL OF ADVANCED DIELECTRICS, 2019, 9 (06)
  • [29] Potential of 3D printing in revolutionizing solar-driven interfacial evaporation for clean water supply - A review
    Torres, Andrea Shane M.
    Gache, Ciara Catherine L.
    Tuazon, Brian J.
    Martinez, Dan William C.
    Kim, Hyeon Tae
    Tijing, Leonard D.
    Dizon, John Ryan C.
    APPLIED MATERIALS TODAY, 2025, 43
  • [30] Hotspots and trends in solar-driven interfacial evaporation technology based on bibliometric management and analysis
    Chen, Jing
    Hu, Lin
    Chen, Qinghai
    Yang, Tingting
    Yi, Chuanjian
    SURFACES AND INTERFACES, 2024, 46