Solar-driven interfacial evaporation on balsa for shale gas wastewater treatment: Analysis of system efficiency and water safety

被引:0
|
作者
Zhong, Shiyu [1 ,2 ]
Song, Zhaoyang [3 ]
Xie, Wancen [4 ]
Guo, Yujie [1 ,2 ]
Shu, Jingyu [1 ,2 ]
Li, Xin [1 ,2 ]
Chen, Guijing [1 ,2 ]
Ren, Xiaoyu [1 ,2 ]
Wang, Zicheng [1 ,2 ]
Hao, Xia [1 ]
Liu, Baicang [1 ,2 ]
机构
[1] Sichuan Univ, Inst New Energy & Low Carbon Technol, Coll Architecture & Environm, State Key Lab Hydraul & Mt River Engn, Chengdu 610207, Sichuan, Peoples R China
[2] Sichuan Univ, Yibin Inst Ind Technol, Yibin Pk,Sect 2,Lingang Ave, Yibin 644000, Sichuan, Peoples R China
[3] Wageningen Univ & Res, Dept Environm Sci, NL-6708 PB Wageningen, Netherlands
[4] Sichuan Agr Univ, Sch Civil Engn, Chengdu 611830, Sichuan, Peoples R China
基金
中国国家自然科学基金;
关键词
Shale gas wastewater; Solar-driven interfacial evaporation; Desalination; Organic chemicals; Safety analysis; FLOWBACK; MEMBRANE; REUSE; WOOD; TECHNOLOGIES; POLLUTANTS;
D O I
10.1016/j.cej.2024.154623
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
The volume of shale gas wastewater (SGW) surges notably with shale gas extraction booms in China. Solar driven interfacial evaporation technology (SIE), which presents significant advantages in environmentally-friendly and low-cost treatment of high-salinity wastewater, shows potential in SGW treatment. Herein, SIE technology based on balsa wood was introduced to treat SGW from the Sichuan Basin, and the system efficiency and condensate water safety were comprehensively explored. Under two sun intensity irritation, the evaporation rate of SGW reached 1.50 kg/(m2 center dot h) with the evaporation efficiency of over 50 %. To maintain a relatively consistent evaporation rate, the anti-scalant nitrilotriacetic acid was used and the evaporation rate reduced by only 0.15 kg/(m2 center dot h) within 8 h. Meanwhile, the SIE system showed remarkable total dissolved solids (TDS) removal rate exceeding 99 % of SGW. In addition, to ensure the safety of condensate water reuse, the transfer of hazardous organic compounds from raw to condensate water was comprehensively detected. It was found that volatile and semi-volatile organic compounds (VOCs and SVOCs) which were of strong responses in raw SGW exhibited much lower responses or cannot be detected in condensate water, including diisobutyl phthalate, dimethylbenzylamine e and pyridine. The results indicate that SIE is capable of removing the hazardous organic compounds. Compounds of strong response in condensate, such as furfural and 2,6-dimethoxy-phenol, are considered as natural compounds in wood, which are degradable and show low impacts on environment. This study suggested a novel and low-cost approach to SGW treatment.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] Solar-driven desalination and resource recovery of shale gas wastewater by on-site interfacial evaporation
    Xie, Wancen
    Tang, Peng
    Wu, Qidong
    Chen, Chen
    Song, Zhaoyang
    Li, Tong
    Bai, Yuhua
    Lin, Shihong
    Tiraferri, Alberto
    Liu, Baicang
    CHEMICAL ENGINEERING JOURNAL, 2022, 428
  • [2] Solar-driven interfacial water evaporation for wastewater purification: Recent advances and challenges
    Cui, Lingfang
    Wang, Peifang
    Che, Huinan
    Chen, Juan
    Liu, Bin
    Ao, Yanhui
    CHEMICAL ENGINEERING JOURNAL, 2023, 477
  • [3] Strategies for enhancing the photothermal conversion efficiency of solar-driven interfacial evaporation
    Xiao, Yumeng
    Guo, Hongmin
    Li, Meng
    He, Jiasen
    Xu, Xin
    Liu, Sichen
    Wang, Lidong
    James, Tony D.
    COORDINATION CHEMISTRY REVIEWS, 2025, 527
  • [4] Efficient solar-driven interfacial water evaporation enabled wastewater remediation by carbonized sugarcane
    Zhang, Wei
    Zhang, Li
    Li, Tengxiang
    Wu, Daxiong
    Zhang, Canying
    Zhu, Haitao
    JOURNAL OF WATER PROCESS ENGINEERING, 2022, 49
  • [5] Solar-driven interfacial evaporation for water treatment: advanced research progress and challenges
    Li, Jiyan
    Jing, Yanju
    Xing, Guoyu
    Liu, Meichen
    Cui, Yang
    Sun, Hanxue
    Zhu, Zhaoqi
    Liang, Weidong
    Li, An
    JOURNAL OF MATERIALS CHEMISTRY A, 2022, 10 (36) : 18470 - 18489
  • [6] Resource recovery from textile wastewater: Dye, salt, and water regeneration using solar-driven interfacial evaporation
    Lin, Shiwei
    Qi, Heshan
    Hou, Peiyu
    Liu, Kai
    JOURNAL OF CLEANER PRODUCTION, 2023, 391
  • [7] High-efficiency wood-based evaporators for solar-driven interfacial evaporation
    Li, Yunqi
    Li, Qing
    Qiu, Yu
    Feng, Haixiang
    SOLAR ENERGY, 2022, 244 : 322 - 330
  • [8] Highly stable TiO2 ceramics for high efficiency and practical solar-driven interfacial evaporation
    Chen, Lei
    Yao, Dongxu
    Liang, Hanqin
    Xia, Yongfeng
    Zeng, Yu-Ping
    SOLAR ENERGY, 2023, 262
  • [9] Janus nanofibrous composite membrane with unidirectional water transportation for high-efficiency solar-driven interfacial evaporation
    Li, Peihang
    Dong, Wenhao
    Hu, Huijing
    Dong, Jinhua
    Zhao, Ziqiang
    Zhou, Yuqi
    Lang, Chenhong
    Liu, Qingsheng
    Li, Haoxuan
    Li, Dawei
    JOURNAL OF ENVIRONMENTAL CHEMICAL ENGINEERING, 2025, 13 (02):
  • [10] Application of natural mineral in round-the-clock solar-driven interfacial evaporation system: A review
    Mu, Yunan
    Shuai, Pengfei
    Liao, Libing
    Gu, Xiaobin
    JOURNAL OF ENVIRONMENTAL CHEMICAL ENGINEERING, 2025, 13 (03):