Deep reinforcement learning based task offloading and resource allocation strategy across multiple edge servers

被引:0
作者
Shi, Bing [1 ,2 ]
Pan, Yuting [1 ]
Huang, Lianzhen [1 ]
机构
[1] Wuhan Univ Technol, Sch Comp Sci & Artificial Intelligence, Wuhan 430000, Peoples R China
[2] Wuhan Univ Technol, Shenzhen Res Inst, Shenzhen 518000, Peoples R China
关键词
Multiple edge servers; Task offloading; Resource allocation; Deep reinforcement learning; INTERNET;
D O I
10.1007/s11761-024-00419-6
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
In the mobile edge computing environment, multiple edge servers are often deployed in task-dense areas, however, the service coverage of these edge servers may overlap with each other. In such scenarios, users within the overlapping areas need to determine which server is chosen to offload the task. However, unreasonable decision of task offloading may result in imbalanced loads, thereby affecting the number of served users and the latency and energy consumption of user task offloading. Furthermore, the complexity of task offloading and resource allocation is further heightened by the dynamic arrival of user tasks. Therefore, it is crucial to design an effective task offloading and resource allocation strategy in an environment with multiple edge servers. In this paper, we propose a task offloading and resource allocation strategy aimed at meeting task latency requirements while maximizing the number of served users and minimizing the average energy consumption of all completed tasks. To timely obtain information about user tasks and the status of edge servers, we adopt a central controller to manage multiple edge servers. Then, we model the problem as a parameterized action Markov decision process and utilize the parameterized deep Q-network algorithm, a deep reinforcement learning algorithm, to solve it. Additionally, we conducted experiments to evaluate the performance of our proposed strategy against five benchmark strategies. The results demonstrate the superiority of our strategy in terms of the number of served users and the average energy consumption per task while meeting task latency constraints.
引用
收藏
页数:14
相关论文
共 50 条
  • [31] A Quantum Reinforcement Learning Approach for Joint Resource Allocation and Task Offloading in Mobile Edge Computing
    Wei, Xinliang
    Gao, Xitong
    Ye, Kejiang
    Xu, Cheng-Zhong
    Wang, Yu
    IEEE TRANSACTIONS ON MOBILE COMPUTING, 2025, 24 (04) : 2580 - 2593
  • [32] Task Offloading in Cloud-Edge Collaborative Environment Based on Deep Reinforcement Learning and Fuzzy Logic
    Wu, Xiaojun
    Wang, Lulu
    Yuan, Sheng
    Chai, Wei
    2024 IEEE 4TH INTERNATIONAL CONFERENCE ON SOFTWARE ENGINEERING AND ARTIFICIAL INTELLIGENCE, SEAI 2024, 2024, : 301 - 308
  • [33] Deep Reinforcement Learning Based Cooperative Partial Task Offloading and Resource Allocation for IIoT Applications
    Zhang, Fan
    Han, Guangjie
    Liu, Li
    Martinez-Garcia, Miguel
    Peng, Yan
    IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING, 2023, 10 (05): : 2991 - 3006
  • [34] Resource Allocation Method of Edge IoT Agent Based on Deep Reinforcement Learning
    Zhong, Jiayong
    Hu, Ke
    Lv, Xiaohong
    Chen, Yongtao
    Gao, Jin
    JOURNAL OF CIRCUITS SYSTEMS AND COMPUTERS, 2024, 33 (05)
  • [35] Network Resource Allocation Strategy Based on Deep Reinforcement Learning
    Zhang, Shidong
    Wang, Chao
    Zhang, Junsan
    Duan, Youxiang
    You, Xinhong
    Zhang, Peiying
    IEEE OPEN JOURNAL OF THE COMPUTER SOCIETY, 2020, 1 (01): : 86 - 94
  • [36] Research on Task Offloading Based on Deep Reinforcement Learning in Mobile Edge Computing
    Lu H.
    Gu C.
    Luo F.
    Ding W.
    Yang T.
    Zheng S.
    Gu, Chunhua (chgu@ecust.edu.cn), 1600, Science Press (57): : 1539 - 1554
  • [37] Collaborative Task Offloading Based on Deep Reinforcement Learning in Heterogeneous Edge Networks
    Du, Yupeng
    Huang, Zhenglei
    Yang, Shujie
    Xiao, Han
    20TH INTERNATIONAL WIRELESS COMMUNICATIONS & MOBILE COMPUTING CONFERENCE, IWCMC 2024, 2024, : 375 - 380
  • [38] Deep Reinforcement Learning-Based Energy Minimization Task Offloading and Resource Allocation for Air Ground Integrated Heterogeneous Networks
    Qin, Peng
    Wang, Shuo
    Lu, Zhou
    Xie, Yuanbo
    Zhao, Xiongwen
    IEEE SYSTEMS JOURNAL, 2023, 17 (03): : 4958 - 4968
  • [39] Task Offloading and Resource Allocation in IoT Based Mobile Edge Computing Using Deep Learning
    Abdullaev, Ilyos
    Prodanova, Natalia
    Bhaskar, K. Aruna
    Lydia, E. Laxmi
    Kadry, Seifedine
    Kim, Jungeun
    CMC-COMPUTERS MATERIALS & CONTINUA, 2023, 76 (02): : 1463 - 1477
  • [40] A collaborative optimization strategy for computing offloading and resource allocation based on multi-agent deep reinforcement learning
    Jiang, Yingying
    Mao, Yuxuan
    Wu, Gaoxiang
    Cai, Zhenhua
    Hao, Yixue
    COMPUTERS & ELECTRICAL ENGINEERING, 2022, 103