Deep reinforcement learning based task offloading and resource allocation strategy across multiple edge servers

被引:0
作者
Shi, Bing [1 ,2 ]
Pan, Yuting [1 ]
Huang, Lianzhen [1 ]
机构
[1] Wuhan Univ Technol, Sch Comp Sci & Artificial Intelligence, Wuhan 430000, Peoples R China
[2] Wuhan Univ Technol, Shenzhen Res Inst, Shenzhen 518000, Peoples R China
关键词
Multiple edge servers; Task offloading; Resource allocation; Deep reinforcement learning; INTERNET;
D O I
10.1007/s11761-024-00419-6
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
In the mobile edge computing environment, multiple edge servers are often deployed in task-dense areas, however, the service coverage of these edge servers may overlap with each other. In such scenarios, users within the overlapping areas need to determine which server is chosen to offload the task. However, unreasonable decision of task offloading may result in imbalanced loads, thereby affecting the number of served users and the latency and energy consumption of user task offloading. Furthermore, the complexity of task offloading and resource allocation is further heightened by the dynamic arrival of user tasks. Therefore, it is crucial to design an effective task offloading and resource allocation strategy in an environment with multiple edge servers. In this paper, we propose a task offloading and resource allocation strategy aimed at meeting task latency requirements while maximizing the number of served users and minimizing the average energy consumption of all completed tasks. To timely obtain information about user tasks and the status of edge servers, we adopt a central controller to manage multiple edge servers. Then, we model the problem as a parameterized action Markov decision process and utilize the parameterized deep Q-network algorithm, a deep reinforcement learning algorithm, to solve it. Additionally, we conducted experiments to evaluate the performance of our proposed strategy against five benchmark strategies. The results demonstrate the superiority of our strategy in terms of the number of served users and the average energy consumption per task while meeting task latency constraints.
引用
收藏
页数:14
相关论文
共 50 条
  • [21] Energy-Efficient Task Offloading and Resource Allocation via Deep Reinforcement Learning for Augmented Reality in Mobile Edge Networks
    Chen, Xing
    Liu, Guizhong
    IEEE INTERNET OF THINGS JOURNAL, 2021, 8 (13) : 10843 - 10856
  • [22] Deep Reinforcement Learning-Based Task Offloading and Load Balancing for Vehicular Edge Computing
    Wu, Zhoupeng
    Jia, Zongpu
    Pang, Xiaoyan
    Zhao, Shan
    ELECTRONICS, 2024, 13 (08)
  • [23] Deep Reinforcement Learning Based Task Offloading Strategy Under Dynamic Pricing in Edge Computing
    Shi, Bing
    Chen, Feiyang
    Tang, Xing
    SERVICE-ORIENTED COMPUTING (ICSOC 2021), 2021, 13121 : 578 - 594
  • [24] Dependent Task Offloading for Edge Computing based on Deep Reinforcement Learning
    Wang, Jin
    Hu, Jia
    Min, Geyong
    Zhan, Wenhan
    Zomaya, Albert Y.
    Georgalas, Nektarios
    IEEE TRANSACTIONS ON COMPUTERS, 2022, 71 (10) : 2449 - 2461
  • [25] Federated Deep Reinforcement Learning for Multimedia Task Offloading and Resource Allocation in MEC Networks
    Zhang, Rongqi
    Pan, Chunyun
    Wang, Yafei
    Yao, Yuanyuan
    Li, Xuehua
    IEICE TRANSACTIONS ON COMMUNICATIONS, 2024, E107B (06) : 446 - 457
  • [26] Deep Reinforcement Learning for Task Offloading in Edge Computing
    Xie, Bo
    Cui, Haixia
    2024 4TH INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND INTELLIGENT SYSTEMS ENGINEERING, MLISE 2024, 2024, : 250 - 254
  • [27] Joint Offloading and Resource Allocation Using Deep Reinforcement Learning in Mobile Edge Computing
    Zhang, Xinjie
    Zhang, Xinglin
    Yang, Wentao
    IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING, 2022, 9 (05): : 3454 - 3466
  • [28] Deep Reinforcement Learning based Reliability-aware Resource Placement and Task Offloading in Edge Computing
    Liang, Jingyu
    Feng, Zihan
    Gao, Han
    Chen, Ying
    Huang, Jiwei
    Truong, Hong-Linh
    2024 IEEE INTERNATIONAL CONFERENCE ON WEB SERVICES, ICWS 2024, 2024, : 697 - 706
  • [29] Edge Collaborative Task Scheduling and Resource Allocation Based on Deep Reinforcement Learning
    Chen, Tianjian
    Lyu, Zengwei
    Yuan, Xiaohui
    Wei, Zhenchun
    Shi, Lei
    Fan, Yuqi
    WIRELESS ALGORITHMS, SYSTEMS, AND APPLICATIONS, PT III, 2022, 13473 : 598 - 606
  • [30] Task offloading method of edge computing in internet of vehicles based on deep reinforcement learning
    Zhang, Degan
    Cao, Lixiang
    Zhu, Haoli
    Zhang, Ting
    Du, Jinyu
    Jiang, Kaiwen
    CLUSTER COMPUTING-THE JOURNAL OF NETWORKS SOFTWARE TOOLS AND APPLICATIONS, 2022, 25 (02): : 1175 - 1187