Impacts of hydrogen on tropospheric ozone and methane and their modulation by atmospheric NOx

被引:0
作者
Bryant, Hannah N. [1 ]
Stevenson, David S. [1 ]
Heal, Mathew R. [2 ]
Abraham, Nathan Luke [3 ,4 ]
机构
[1] Univ Edinburgh, Sch Geosci, Edinburgh, Scotland
[2] Univ Edinburgh, Sch Chem, Edinburgh, Scotland
[3] Natl Ctr Atmospher Sci, Cambridge, England
[4] Univ Cambridge, Yusuf Hamied Dept Chem, Cambridge, England
关键词
hydrogen; atmosphere; chemistry; climate; ozone; global warming potential; EMISSIONS; CHEMISTRY; H-2;
D O I
10.3389/fenrg.2024.1415593
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Atmospheric hydrogen concentrations have been increasing in recent decades. Hydrogen is radiatively inert, but it is chemically reactive and exerts an indirect radiative forcing through chemistry that perturbs the concentrations of key species within the troposphere, including ozone. Using the atmospheric version of the United Kingdom Earth System Model, we analyse the impact of 10% increased surface concentrations of hydrogen on ozone production and loss. We also analyse the impact of this hydrogen in atmospheres with lower anthropogenic emissions of nitrogen oxides (80% and 30% of present-day anthropogenic surface emissions), as this is a likely outcome of the transition from fossil fuels towards cleaner technologies. In each case, we also assess the changes in hydroxyl radical concentration and hence methane lifetime and calculate the net impact on the hydrogen tropospheric global warming potential (GWP). We find that the hydrogen tropospheric GWP100 will change relatively little with decreases in surface anthropogenic NOx emissions (9.4 and 9.1 for our present day and 30% anthropogenic emissions, respectively). The current estimate for hydrogen GWP100 can therefore be applied to future scenarios of differing NOx, although this conclusion may be impacted by future changes in emissions of other reactive species.
引用
收藏
页数:14
相关论文
共 22 条
[1]   Description and evaluation of the UKCA stratosphere-troposphere chemistry scheme (StratTrop vn 1.0) implemented in UKESM1 [J].
Archibald, Alexander T. ;
O'Connor, Fiona M. ;
Abraham, Nathan Luke ;
Archer-Nicholls, Scott ;
Chipperfield, Martyn P. ;
Dalvi, Mohit ;
Folberth, Gerd A. ;
Dennison, Fraser ;
Dhomse, Sandip S. ;
Griffiths, Paul T. ;
Hardacre, Catherine ;
Hewitt, Alan J. ;
Hill, Richard S. ;
Johnson, Colin E. ;
Keeble, James ;
Kohler, Marcus O. ;
Morgenstern, Olaf ;
Mulcahy, Jane P. ;
Ordonez, Carlos ;
Pope, Richard J. ;
Rumbold, Steven T. ;
Russo, Maria R. ;
Savage, Nicholas H. ;
Sellar, Alistair ;
Stringer, Marc ;
Turnock, Steven T. ;
Wild, Oliver ;
Zeng, Guang .
GEOSCIENTIFIC MODEL DEVELOPMENT, 2020, 13 (03) :1223-1266
[2]   PHOTOCHEMICAL REACTIONS INITIATED BY AND INFLUENCING OZONE IN UNPOLLUTED TROPOSPHERIC AIR [J].
CRUTZEN, PJ .
TELLUS, 1974, 26 (1-2) :47-57
[3]   The tropospheric cycle of H2: a critical review [J].
Ehhalt, D. H. ;
Rohrer, F. .
TELLUS SERIES B-CHEMICAL AND PHYSICAL METEOROLOGY, 2009, 61 (03) :500-535
[4]  
Forster P, 2007, AR4 CLIMATE CHANGE 2007: THE PHYSICAL SCIENCE BASIS, P129
[5]   Global emissions pathways under different socioeconomic scenarios for use in CMIP6: a dataset of harmonized emissions trajectories through the end of the century [J].
Gidden, Matthew J. ;
Riahi, Keywan ;
Smith, Steven J. ;
Fujimori, Shinichiro ;
Luderer, Gunnar ;
Kriegler, Elmar ;
van Vuuren, Detlef P. ;
van den Berg, Maarten ;
Feng, Leyang ;
Klein, David ;
Calvin, Katherine ;
Doelman, Jonathan C. ;
Frank, Stefan ;
Fricko, Oliver ;
Harmsen, Mathijs ;
Hasegawa, Tomoko ;
Havlik, Petr ;
Hilaire, Jerome ;
Hoesly, Rachel ;
Horing, Jill ;
Popp, Alexander ;
Stehfest, Elke ;
Takahashi, Kiyoshi .
GEOSCIENTIFIC MODEL DEVELOPMENT, 2019, 12 (04) :1443-1475
[6]   Historical (1750-2014) anthropogenic emissions of reactive gases and aerosols from the Community Emissions Data System (CEDS) [J].
Hoesly, Rachel M. ;
Smith, Steven J. ;
Feng, Leyang ;
Klimont, Zbigniew ;
Janssens-Maenhout, Greet ;
Pitkanen, Tyler ;
Seibert, Jonathan J. ;
Linh Vu ;
Andres, Robert J. ;
Bolt, Ryan M. ;
Bond, Tami C. ;
Dawidowski, Laura ;
Kholod, Nazar ;
Kurokawa, June-ichi ;
Li, Meng ;
Liu, Liang ;
Lu, Zifeng ;
Moura, Maria Cecilia P. ;
O'Rourke, Patrick R. ;
Zhang, Qiang .
GEOSCIENTIFIC MODEL DEVELOPMENT, 2018, 11 (01) :369-408
[7]   Effects of wind-powered hydrogen fuel cell vehicles on stratospheric ozone and global climate [J].
Jacobson, Mark Z. .
GEOPHYSICAL RESEARCH LETTERS, 2008, 35 (19)
[8]   Optimising air quality co-benefits in a hydrogen economy: a case for hydrogen-specific standards for NOx emissions [J].
Lewis, Alastair C. .
ENVIRONMENTAL SCIENCE-ATMOSPHERES, 2021, 1 (05) :201-207
[9]   Historical greenhouse gas concentrations for climate modelling (CMIP6) [J].
Meinshausen, Malte ;
Vogel, Elisabeth ;
Nauels, Alexander ;
Lorbacher, Katja ;
Meinshausen, Nicolai ;
Etheridge, David M. ;
Fraser, Paul J. ;
Montzka, Stephen A. ;
Rayner, Peter J. ;
Trudinger, Cathy M. ;
Krummel, Paul B. ;
Beyerle, Urs ;
Canadell, Josep G. ;
Daniel, John S. ;
Enting, Ian G. ;
Law, Rachel M. ;
Lunder, Chris R. ;
O'Doherty, Simon ;
Prinn, Ron G. ;
Reimann, Stefan ;
Rubino, Mauro ;
Velders, Guus J. M. ;
Vollmer, Martin K. ;
Wang, Ray H. J. ;
Weiss, Ray .
GEOSCIENTIFIC MODEL DEVELOPMENT, 2017, 10 (05) :2057-2116
[10]   Preindustrial to present-day changes in tropospheric hydroxyl radical and methane lifetime from the Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP) [J].
Naik, V. ;
Voulgarakis, A. ;
Fiore, A. M. ;
Horowitz, L. W. ;
Lamarque, J. -F. ;
Lin, M. ;
Prather, M. J. ;
Young, P. J. ;
Bergmann, D. ;
Cameron-Smith, P. J. ;
Cionni, I. ;
Collins, W. J. ;
Dalsoren, S. B. ;
Doherty, R. ;
Eyring, V. ;
Faluvegi, G. ;
Folberth, G. A. ;
Josse, B. ;
Lee, Y. H. ;
MacKenzie, I. A. ;
Nagashima, T. ;
van Noije, T. P. C. ;
Plummer, D. A. ;
Righi, M. ;
Rumbold, S. T. ;
Skeie, R. ;
Shindell, D. T. ;
Stevenson, D. S. ;
Strode, S. ;
Sudo, K. ;
Szopa, S. ;
Zeng, G. .
ATMOSPHERIC CHEMISTRY AND PHYSICS, 2013, 13 (10) :5277-5298