Polyamines: New Plant Growth Regulators Promoting Salt Stress Tolerance in Plants

被引:3
|
作者
Amiri, Hamzeh [1 ]
Banakar, Mohammad Hossein [2 ]
Gavyar, Parvaneh Hemmati Hassan [1 ]
机构
[1] Lorestan Univ, Fac Sci, Dept Biol, Khorramabad, Iran
[2] Agr Res Educ & Extens Org, Natl Salin Res Ctr, Yazd, Iran
关键词
Putrescine; Spermidine; Spermine; Salinity; Oxidative stress; ARGININE DECARBOXYLASE ACTIVITY; ABIOTIC STRESS; ARABIDOPSIS-THALIANA; NITRIC-OXIDE; ORYZA-SATIVA; LIPID-PEROXIDATION; ABSCISIC-ACID; SPERMIDINE; SALINITY; BIOSYNTHESIS;
D O I
10.1007/s00344-024-11447-z
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Soil salinization is a major abiotic stress that significantly impairs plant growth and development. This leads to various physiological disorders in plants, ultimately posing a threat to global food security. Polyamines are emerging as new plant growth regulators that can help promote salt stress tolerance in plants. Research has shown that application of polyamines, which are organic compounds containing multiple amine groups, can help alleviate the detrimental effects of salt stress on plants. Increasing the levels of polyamines, either naturally during salt stress or through exogenous application, helps establish homeostasis of polyamines within the plant. This polyamine homeostasis then leads to the homeostasis of reactive oxygen species (ROS) through several physiological processes such as hormonal regulation, ion channel regulation, activation of ROS scavenging enzymes, and antioxidant activity. Collectively, these polyamine-mediated physiological changes help the plant establish ROS homeostasis, which is a key mechanism underlying enhanced salt stress tolerance. The balanced regulation of polyamines and ROS is crucial for plant adaptive responses and survival under saline conditions. Overall, the use of polyamines represents a promising approach for developing more salt-tolerant crops and improving agricultural productivity in saline-affected regions.
引用
收藏
页码:4923 / 4940
页数:18
相关论文
共 50 条
  • [1] Mechanistic Insights of Plant Growth Promoting Bacteria Mediated Drought and Salt Stress Tolerance in Plants for Sustainable Agriculture
    Gupta, Anmol
    Mishra, Richa
    Rai, Smita
    Bano, Ambreen
    Pathak, Neelam
    Fujita, Masayuki
    Kumar, Manoj
    Hasanuzzaman, Mirza
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2022, 23 (07)
  • [2] Polyamines: Small Amines with Large Effects on Plant Abiotic Stress Tolerance
    Alcazar, Ruben
    Bueno, Milagros
    Tiburcio, Antonio F.
    CELLS, 2020, 9 (11)
  • [3] Polyamines: Emerging Hubs Promoting Drought and Salt Stress Tolerance in Plants
    Miren Sequera-Mutiozabal
    Chrystalla Antoniou
    Antonio F. Tiburcio
    Rubén Alcázar
    Vasileios Fotopoulos
    Current Molecular Biology Reports, 2017, 3 (1) : 28 - 36
  • [4] Polyamines and abiotic stress tolerance in plants
    Gill, Sarvajeet Singh
    Tuteja, Narendra
    PLANT SIGNALING & BEHAVIOR, 2010, 5 (01) : 26 - 33
  • [5] Phytohormones as Growth Regulators During Abiotic Stress Tolerance in Plants
    EL Sabagh, Ayman
    Islam, Mohammad Sohidul
    Hossain, Akbar
    Iqbal, Muhammad Aamir
    Mubeen, Muhammad
    Waleed, Mirza
    Reginato, Mariana
    Battaglia, Martin
    Ahmed, Sharif
    Rehman, Abdul
    Arif, Muhammad
    Athar, Habib-Ur-Rehman
    Ratnasekera, Disna
    Danish, Subhan
    Raza, Muhammad Ali
    Rajendran, Karthika
    Mushtaq, Muntazir
    Skalicky, Milan
    Brestic, Marian
    Soufan, Walid
    Fahad, Shah
    Pandey, Saurabh
    Kamran, Muhammad
    Datta, Rahul
    Abdelhamid, Magdi T.
    FRONTIERS IN AGRONOMY, 2022, 4
  • [6] Polyamines and nitric oxide crosstalk in plant development and abiotic stress tolerance
    Tripathi, Durgesh K.
    Bhat, Javaid A.
    Ahmad, Parvaiz
    Allakhverdiev, Suleyman I.
    FUNCTIONAL PLANT BIOLOGY, 2023, 50 (02) : I - IV
  • [7] Polyamines and salt stress response and tolerance in Arabidopsis thaliana flowers
    Tassoni, Annalisa
    Franceschetti, Marina
    Bagni, Nello
    PLANT PHYSIOLOGY AND BIOCHEMISTRY, 2008, 46 (5-6) : 607 - 613
  • [8] Enhanced salt stress tolerance in tomato plants following inoculation with newly isolated plant growth-promoting rhizobacteria
    Abdelkefi, Nourelhouda
    Louati, Ibtihel
    Mechichi, Hela-Zouari
    Sayahi, Naima
    El-Sayed, Wael S.
    El Nayal, Ashraf
    Ismail, Wael
    Hanin, Moez
    Mechichi, Tahar
    SCIENTIA HORTICULTURAE, 2024, 328
  • [9] Exogenous melatonin induces salt and drought stress tolerance in rice by promoting plant growth and defense system
    Khan, Zakirullah
    Jan, Rahmatullah
    Asif, Saleem
    Farooq, Muhammad
    Jang, Yoon-Hee
    Kim, Eun-Gyeong
    Kim, Nari
    Kim, Kyung-Min
    SCIENTIFIC REPORTS, 2024, 14 (01)
  • [10] Plant Salt Stress: Adaptive Responses, Tolerance Mechanism and Bioengineering for Salt Tolerance
    Muchate, Niramaya S.
    Nikalje, Ganesh C.
    Rajurkar, Nilima S.
    Suprasanna, P.
    Nikam, Tukaram D.
    BOTANICAL REVIEW, 2016, 82 (04) : 371 - 406