On greedy randomized Kaczmarz-type methods for solving the system of tensor equations

被引:0
|
作者
Wang, Jungang [1 ,2 ]
Li, Zexi [1 ]
Ran, Yuhong [3 ]
Li, Yiqiang [1 ]
机构
[1] Northwestern Polytech Univ, Sch Math & Stat, Xian 710129, Peoples R China
[2] Northwestern Polytech Univ, MOE, Key Lab Complex Sci Aerosp, Xian 710129, Peoples R China
[3] Northwest Univ, Sch Math, Xian 710127, Peoples R China
关键词
System of tensor equations; Kaczmarz method; Randomized iteration; Greedy strategy; Deterministic convergence; MULTILINEAR SYSTEMS;
D O I
10.1016/j.aml.2024.109261
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
For solving the system of tensor equations Ax(m-1) = b, where x, b is an element of R-n and A is an m-order n-dimensional real tensor, we introduce two greedy Kaczmarz-type methods: the tensor relaxed greedy randomized Kaczmarz algorithm and the accelerated tensor relaxed greedy Kaczmarz algorithm. The deterministic convergence analysis of both methods is given based on the local tangential cone condition. Numerical results demonstrate that the greedy Kaczmarz-type methods are more efficient than the randomized Kaczmarz-type methods, and the accelerated greedy version exhibits significant acceleration.
引用
收藏
页数:7
相关论文
共 50 条
  • [31] KACZMARZ-TYPE INNER-ITERATION PRECONDITIONED FLEXIBLE GMRES METHODS FOR CONSISTENT LINEAR SYSTEMS
    Du Y.-S.
    Hayami K.
    Zheng N.
    Morikuni K.
    Yin J.-F.
    Du, Yi-Shu (duyishu@tongji.edu.cn), 1600, National Institute of Informatics (2020):
  • [32] On the Kaczmarz methods based on relaxed greedy selection for solving matrix equation AXB = C
    Wu, Nian-Ci
    Liu, Cheng-Zhi
    Zuo, Qian
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2022, 413
  • [33] A Greedy Two-Subspace Randomized Kaczmarz Method for Solving Large Sparse Linear Systems
    Jing Y.
    Li C.
    Hu S.
    Tongji Daxue Xuebao/Journal of Tongji University, 2021, 49 (10): : 1473 - 1483
  • [34] On greedy partially randomized extended Kaczmarz method for solving large sparse inconsistent linear systems
    Chen, Fang
    Mao, Jin-Feng
    NUMERICAL ALGORITHMS, 2024,
  • [35] KACZMARZ-TYPE INNER-ITERATION PRECONDITIONED FLEXIBLE GMRES METHODS FOR CONSISTENT LINEAR SYSTEMS\ast
    Du, Yi-Shu
    Hayami, Ken
    Zheng, Ning
    Morikuni, Keiichi
    Yin, Jun-Feng
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2021, 43 (05): : S345 - S366
  • [36] Remarks on Kaczmarz Algorithm for Solving Consistent and Inconsistent System of Linear Equations
    Huang, Xinyin
    Liu, Gang
    Niu, Qiang
    COMPUTATIONAL SCIENCE - ICCS 2020, PT II, 2020, 12138 : 225 - 236
  • [37] A class of pseudoinverse-free greedy block nonlinear Kaczmarz methods for nonlinear systems of equations
    Lv, Ying
    Xing, Li -Li
    Bao, Wen-Di
    Li, Wei-Guo
    Guo, Zhi-Wei
    NETWORKS AND HETEROGENEOUS MEDIA, 2024, 19 (01) : 305 - 323
  • [38] A greedy average block Kaczmarz method for the large scaled consistent system of linear equations
    Wen, Li
    Yin, Feng
    Liao, Yimou
    Huang, Guangxin
    AIMS MATHEMATICS, 2022, 7 (04): : 6792 - 6806
  • [39] A distributed memory parallel randomized Kaczmarz for sparse system of equations
    Bolukbasi, Ercan Selcuk
    Torun, Fahreddin Sukru
    Manguoglu, Murat
    CONCURRENCY AND COMPUTATION-PRACTICE & EXPERIENCE, 2024, 36 (25):
  • [40] Solving systems of phaseless equations via Kaczmarz methods: a proof of concept study
    Wei, Ke
    INVERSE PROBLEMS, 2015, 31 (12)