Atomic force microscopy investigation of DNA denaturation on a highly oriented pyrolytic graphite surface

被引:0
|
作者
Barinov, Nikolay A. [1 ,2 ]
Ivanov, Dimitry A. [2 ,3 ]
Dubrovin, Evgeniy, V [1 ,2 ,4 ]
Klinov, Dmitry, V [1 ]
机构
[1] Moscow Inst Phys & Technol, Inst Per 9, Dolgoprudnyi 141700, Russia
[2] Sirius Univ Sci & Technol, 1 Olymp Ave, Soci 354340, Russia
[3] CNRS, UMR7361, Inst Sci Materiaux Mulhouse IS2M, 15 Jean Starcky, F-68057 Mulhouse, France
[4] Lomonosov Moscow State Univ, Leninskie Gory 1 bld 2, Moscow 119991, Russia
关键词
AFM; DNA biosensors; DNA adsorption; DNA unfolding; DNA conformation; Graphite; GRAPHENE; ADSORPTION; BINDING;
D O I
10.1016/j.ijbiomac.2024.131630
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Understanding of DNA interaction with carbonaceous surfaces (including graphite, graphene and carbon nanotubes) is important for the development of DNA-based biosensors and other biotechnological devices. Though many issues related to DNA adsorption on graphitic surfaces have been studied, some important aspects of DNA interaction with graphite remain unclear. In this work, we use atomic force microscopy (AFM) equipped with super-sharp cantilevers to analyze the morphology and conformation of relatively long DNA molecule adsorbed on a highly oriented pyrolytic graphite (HOPG) surface. We have revealed the effect of DNA embedding into an organic monolayer of N,N '-(decane-1,10-diyl)-bis(tetraglycinamide) (GM), which may "freeze" DNA conformation on a HOPG surface during drying. The dependence of the mean squared point-to-point distance on the contour length suggests that DNA adsorbs on a bare HOPG by a "kinetic trapping" mechanism. For the first time, we have estimated the unfolded fraction of DNA upon contact with a HOPG surface (24 +/- 5 %). The obtained results represent a novel experimental model for investigation of the conformation and morphology of DNA adsorbed on graphitic surfaces and provide with a new insight into DNA interaction with graphite.
引用
收藏
页数:7
相关论文
共 50 条
  • [31] Huge magnetoresistance effect of highly oriented pyrolytic graphite
    Du, YW
    Wang, ZM
    Ni, G
    Xing, DY
    Xu, QY
    ACTA PHYSICA SINICA, 2004, 53 (04) : 1191 - 1194
  • [32] Magnetic vortex and unsaturated magnetization components in highly oriented pyrolytic graphite
    Taallah, Ayoub
    Xia, JiaChen
    Guo, Jian
    Shuai, Gao
    Odunmbaku, Omololu
    Gong, Min
    Shang, Hongyan
    Corrias, Anna
    Boi, Filippo S.
    MATERIALS RESEARCH EXPRESS, 2020, 7 (05)
  • [33] Terahertz plasmonic properties of highly oriented pyrolytic graphite
    Nguyen, T. D.
    Liu, S.
    Kumar, G.
    Nahata, A.
    Vardeny, Z. V.
    APPLIED PHYSICS LETTERS, 2013, 102 (17)
  • [34] Nickel evaporation in high vacuum and formation of nickel oxide nanoparticles on highly oriented pyrolytic graphite. X-ray photoelectron spectroscopy and atomic force microscopy study
    Franc, Jiri
    Bastl, Zdenek
    THIN SOLID FILMS, 2008, 516 (18) : 6095 - 6103
  • [35] Anisotropic friction behaviour of highly oriented pyrolytic graphite
    Xiao, Jinkun
    Zhang, Lei
    Zhou, Kechao
    Li, Jianguo
    Xie, Xinlin
    Li, Zhiyou
    CARBON, 2013, 65 : 53 - 62
  • [36] VUV photochemistry of oriented molecules: methylchloride on highly oriented pyrolytic graphite
    Wilkes, J
    Lamont, CLA
    Siller, L
    Coquel, JM
    Palmer, RE
    SURFACE SCIENCE, 1997, 390 (1-3) : 237 - 242
  • [37] DNA adsorption and desorption on mica surface studied by atomic force microscopy
    Sun, Lanlan
    Zhao, Dongxu
    Zhang, Yue
    Xu, Fugang
    Li, Zhuang
    APPLIED SURFACE SCIENCE, 2011, 257 (15) : 6560 - 6567
  • [39] Magnetic signals of proton irradiated spots created on highly oriented pyrolytic graphite surface
    Han, KH
    Spemann, D
    Esquinazi, P
    Höhne, R
    Riede, V
    Butz, T
    JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 2004, 272 : 1190 - 1191
  • [40] Effect of 305-MeV krypton ions on the surface of highly oriented pyrolytic graphite
    A. Yu. Didyk
    S. V. Latyshev
    V. K. Semina
    A. É. Stepanov
    A. L. Suvorov
    A. S. Fedotov
    Yu. N. Cheblukov
    Technical Physics Letters, 2000, 26 : 751 - 753