Local heat current flow in ballistic phonon transport of graphene nanoribbons

被引:1
作者
Chen, Yin-Jie [1 ]
Lu, Jing-Tao [1 ]
机构
[1] Huazhong Univ Sci & Technol, Inst Quantum Sci & Engn, Sch Phys, Wuhan 430074, Peoples R China
关键词
CURRENT-DENSITY; ELECTRON; TRANSMISSION; RESISTANCE; VORTICES; DEFECTS; ORDER;
D O I
10.1103/PhysRevB.110.035422
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Utilizing the nonequilibrium Green's function method, we study the local heat current flow of phonons in nanoscale ballistic graphene nanoribbon, where boundary scattering leads to the formation of atomic-scale current vortices. We further map out the atomic temperature distribution in the ribbon with B & uuml;ttiker's probe approach. From the heat current and temperature distribution, we observe inverted temperature response in the ribbon, where the heat current direction goes from the colder to the hotter region. Moreover, we show that atomic scale defect can generate heat vortex at certain frequency, but it is averaged out when including contributions from all the phonon modes. Meanwhile, our results have recovered residual-resistivity dipole features manifested at the vicinity of local defects. These results extend the study of local heat vortex and negative temperature response in the bulk hydrodynamic regime to the atomic-scale ballistic regime, further confirming boundary scattering is crucial to generate backflow of heat current.
引用
收藏
页数:11
相关论文
共 122 条
[1]   Direct observation of vortices in an electron fluid [J].
Aharon-Steinberg, A. ;
Volkl, T. ;
Kaplan, A. ;
Pariari, A. K. ;
Roy, I. ;
Holder, T. ;
Wolf, Y. ;
Meltzer, A. Y. ;
Myasoedov, Y. ;
Huber, M. E. ;
Yan, B. ;
Falkovich, G. ;
Levitov, L. S. ;
Hucker, M. ;
Zeldov, E. .
NATURE, 2022, 607 (7917) :74-+
[2]   Heat production and energy balance in nanoscale engines driven by time-dependent fields [J].
Arrachea, Liliana ;
Moskalets, Michael ;
Martin-Moreno, Luis .
PHYSICAL REVIEW B, 2007, 75 (24)
[3]   Steering the current flow in twisted bilayer graphene [J].
Arturo Sanchez-Sanchez, Jesus ;
Navarro-Espino, Montserrat ;
Betancur-Ocampo, Yonatan ;
Eduardo Barrios-Vargas, Jose ;
Stegmann, Thomas .
JOURNAL OF PHYSICS-MATERIALS, 2022, 5 (02)
[4]   Ballistic to diffusive crossover of heat flow in graphene ribbons [J].
Bae, Myung-Ho ;
Li, Zuanyi ;
Aksamija, Zlatan ;
Martin, Pierre N. ;
Xiong, Feng ;
Ong, Zhun-Yong ;
Knezevic, Irena ;
Pop, Eric .
NATURE COMMUNICATIONS, 2013, 4
[5]   Negative local resistance caused by viscous electron backflow in graphene [J].
Bandurin, D. A. ;
Torre, I. ;
Kumar, R. Krishna ;
Ben Shalom, M. ;
Tomadin, A. ;
Principi, A. ;
Auton, G. H. ;
Khestanova, E. ;
Novoselov, K. S. ;
Grigorieva, I. V. ;
Ponomarenko, L. A. ;
Geim, A. K. ;
Polini, M. .
SCIENCE, 2016, 351 (6277) :1055-1058
[6]   Quantum heat transfer in harmonic chains with self-consistent reservoirs: Exact numerical simulations [J].
Bandyopadhyay, Malay ;
Segal, Dvira .
PHYSICAL REVIEW E, 2011, 84 (01)
[7]   Phonon vortices at heavy impurities in two-dimensional materials [J].
Bao, De-Liang ;
Xu, Mingquan ;
Li, Ao-Wen ;
Su, Gang ;
Zhou, Wu ;
Pantelides, Sokrates T. .
NANOSCALE HORIZONS, 2024, 9 (02) :248-253
[8]   Environment-dependent vibrational heat transport in molecular junctions: Rectification, quantum effects, vibrational mismatch [J].
Behera, Jayasmita ;
Bandyopadhyay, Malay .
PHYSICAL REVIEW E, 2021, 104 (01)
[9]   Tunable quantum temperature oscillations in graphene nanostructures [J].
Bergfield, Justin P. ;
Ratner, Mark A. ;
Stafford, Charles A. ;
Di Ventra, Massimiliano .
PHYSICAL REVIEW B, 2015, 91 (12)
[10]   Probing Maxwell's Demon with a Nanoscale Thermometer [J].
Bergfield, Justin P. ;
Story, Shauna M. ;
Stafford, Robert C. ;
Stafford, Charles A. .
ACS NANO, 2013, 7 (05) :4429-4440