Experimental Study on Thermal Runaway Characteristics of High-Nickel Ternary Lithium-Ion Batteries under Normal and Low Pressures

被引:0
|
作者
Jin, Ye [1 ]
Meng, Di [1 ]
Zhao, Chen-Xi [1 ]
Yu, Jia-Ling [1 ]
Wang, Xue-Hui [1 ]
Wang, Jian [1 ]
机构
[1] Univ Sci & Technol China, State Key Lab Fire Sci, Hefei 230026, Peoples R China
来源
BATTERIES-BASEL | 2024年 / 10卷 / 08期
关键词
high-Ni ternary lithium-ion battery; thermal runaway; low pressure; fire hazards; aviation applications; STRUCTURAL-CHANGES; AMBIENT-PRESSURE; FIRE BEHAVIORS; METAL-OXIDE; HIGH-POWER; CELLS; MECHANISM; STATE;
D O I
10.3390/batteries10080287
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
High-nickel (Ni) ternary lithium-ion batteries (LIBs) are widely used in low-pressure environments such as in the aviation industry, but their attribute of high energy density poses significant fire hazards, especially under low pressure where thermal runaway behavior is complex, thus requiring relevant experiments. This study investigates the thermal runaway characteristics of LiNi0.8Mn0.1Co0.1O2 (NCM811) 18650 LIBs at different states of charge (SOCs) (75%, 100%) under various ambient pressures (101 kPa, 80 kPa, 60 kPa, 40 kPa). The results show that, as the pressure is decreased from 101 kPa to 40 kPa, the onset time of thermal runaway is extended by 28.2 s for 75% SOC and by 40.8 s for 100% SOC; accordingly, the onset temperature of thermal runaway increases by 19.3 degrees C for 75% SOC and by 33.5 degrees C for 100% SOC; the maximum surface temperature decreases by 70.8 degrees C for 75% SOC and by 68.2 degrees C for 100% SOC. The cell mass loss and loss rate slightly decrease with reduced pressure. However, ambient pressure has little impact on the time and temperature of venting as well as the voltage drop time. SEM/EDS analysis verifies that electrolyte evaporates faster under low pressure. Furthermore, the oxygen concentration is lower under low pressure, which consequently leads to a delay in thermal runaway. This study contributes to understanding thermal runaway characteristics of high-Ni ternary LIBs and provides guidance for their safe application in low-pressure aviation environments.
引用
收藏
页数:18
相关论文
共 50 条
  • [31] Monitoring and diagnostic approaches for thermal runaway in lithium-ion batteries
    Xu, Zengheng
    Zhou, Xiaoyan
    Fu, Jialong
    Li, Qiutong
    Tan, Zejie
    Fan, Xiaopeng
    Wang, Zhiming
    Tian, Bing
    Guo, Xin
    CHINESE SCIENCE BULLETIN-CHINESE, 2023, 68 (33): : 4501 - 4516
  • [32] Modeling thermal runaway of lithium-ion batteries with a venting process
    He, C. X.
    Yue, Q. L.
    Chen, Q.
    Zhao, T. S.
    APPLIED ENERGY, 2022, 327
  • [33] Characteristics of particle emissions from lithium-ion batteries during thermal runaway: A review
    Li, Weifeng
    Xue, Yao
    Feng, Xinbo
    Rao, Shun
    Zhang, Tianyao
    Gao, Zhenhai
    Guo, Yueming
    Zhou, Haoyu
    Zhao, Haoyuan
    Song, Zelai
    Shi, Jiawei
    Wang, Hewu
    Wang, Deping
    JOURNAL OF ENERGY STORAGE, 2024, 78
  • [34] Experimental Study of Thermal Runaway Process of 18650 Lithium-Ion Battery
    Liu, Jingjing
    Wang, Zhirong
    Gong, Junhui
    Liu, Kai
    Wang, Hao
    Guo, Linsheng
    MATERIALS, 2017, 10 (03):
  • [35] Understanding Thermal Runaway Phenomena in Overcharged Lithium-Ion Batteries
    Lee, Minseo
    You, Ji-sun
    Kang, Kyeong-sin
    Lee, Jaesung
    Bong, Sungyool
    JOURNAL OF THE KOREAN ELECTROCHEMICAL SOCIETY, 2024, 27 (02): : 55 - 72
  • [36] Experimental study on thermal runaway of fully charged and overcharged lithium-ion batteries under adiabatic and side-heating test
    Zhao, Chunpeng
    Wang, Tinghua
    Huang, Zheng
    Wu, Jingyun
    Zhou, Hongwei
    Ma, Mina
    Xu, Jiajia
    Wang, Zhaoyu
    Li, Huang
    Sun, Jinhua
    Wang, Qingsong
    JOURNAL OF ENERGY STORAGE, 2021, 38
  • [37] Numerical analysis of thermal runaway process of lithium-ion batteries considering combustion
    Kim, Ryang Hoon
    Lee, Do Hyun
    Kim, Young Kyo
    Chu, Chan Ho
    Lee, Yong Gyun
    Kim, Dong Kyu
    JOURNAL OF ENERGY STORAGE, 2024, 78
  • [38] Controlling Residual Lithium in High-Nickel (>90%) Lithium Layered Oxides for Cathodes in Lithium-Ion Batteries
    Seong, Won Mo
    Cho, Kwang-Hwan
    Park, Ji-Won
    Park, Hyeokjun
    Eum, Donggun
    Lee, Myeong Hwan
    Kim, Il-seok Stephen
    Lim, Jongwoo
    Kang, Kisuk
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2020, 59 (42) : 18662 - 18669
  • [39] Experimental Analysis of Thermal Runaway and Propagation in Lithium-Ion Battery Modules
    Lopez, Carlos F.
    Jeevarajan, Judith A.
    Mukherjee, Partha P.
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2015, 162 (09) : A1905 - A1915
  • [40] Characterization on thermal runaway of commercial 18650 lithium-ion batteries used in electric vehicles: A review
    Duh, Yih-Shing
    Sun, Yujie
    Lin, Xin
    Zheng, Jiaojiao
    Wang, Mingchen
    Wang, Yongjing
    Lin, Xiaoying
    Jiang, Xiaoyu
    Zheng, Zhigong
    Zheng, Shuo
    Yu, Gending
    JOURNAL OF ENERGY STORAGE, 2021, 41