Mitigating thermal runaway propagation in high specific energy lithium-ion battery modules through nanofiber aerogel composite material

被引:5
|
作者
Wong, Shaw Kang [1 ]
Li, Kuijie [1 ,2 ]
Rui, Xinyu [1 ]
Fan, Liyun [2 ]
Ouyang, Minggao [1 ]
Feng, Xuning [1 ]
机构
[1] Tsinghua Univ, State Key Lab Intelligent Green Vehicle & Mobil, Beijing 100084, Peoples R China
[2] Harbin Engn Univ, Coll Power & Energy Engn, Harbin 150001, Peoples R China
关键词
Lithium ion battery; Battery safety; Thermal runaway propagation; Nanofiber aerogel; Energy storage; TECHNOLOGY;
D O I
10.1016/j.energy.2024.132353
中图分类号
O414.1 [热力学];
学科分类号
摘要
Thermal runaway and its propagation within lithium-ion battery systems pose significant challenges to widespread adoption in electric vehicles and energy storage systems. Deploying a thermal barrier between adjacent batteries is a common and effective strategy to prevent thermal propagation. This experimental study evaluates the inhibitory effect of nanofiber aerogel on thermal propagation within high-energy-density lithium-ion battery modules. The results indicate that increasing the thickness of nanofiber aerogel prolongs the average time interval between thermal runaway propagation events between adjacent batteries and increases their peak temperature difference, while the maximum surface temperature of each battery exhibits an overall downward trend. Specifically, compared to no nanofiber aerogel, a 0.5 mm nanofiber aerogel extends the average propagation time by 2 times, and a 1.0 mm nanofiber aerogel successfully prevents thermal propagation from the third to the fourth battery, with an average time extension of nearly 6 times. Furthermore, it is found that thermal runaway propagation can be effectively prevented when the aerogel thickness exceeds 2.0 mm. The microstructure of both fresh and damaged nanofiber aerogels was examined using Scanning Electron Microscopy to validate and analyze their robust durability. This study provides valuable insights for designing safer high-energy-density battery systems.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] The effect of PCM on mitigating thermal runaway propagation in lithium-ion battery modules
    Luo, Weiyi
    Zhao, Luyao
    Chen, Mingyi
    APPLIED THERMAL ENGINEERING, 2024, 236
  • [2] Thermal Runaway Propagation Analytics and Crosstalk in Lithium-Ion Battery Modules
    Karmakar, Avijit
    Zhou, Hanwei
    Vishnugopi, Bairav S.
    Mukherjee, Partha P.
    ENERGY TECHNOLOGY, 2024, 12 (02)
  • [3] Suppressing thermal runaway propagation of nickel-rich Lithium-ion battery modules using silica aerogel sheets
    Tang, Jin
    Wu, Xinyuan
    Ren, Jian
    Min, Huihua
    Liu, Xiaomin
    Kong, Yong
    Che, Peipei
    Zhai, Wei
    Yang, Hui
    Shen, Xiaodong
    PROCESS SAFETY AND ENVIRONMENTAL PROTECTION, 2023, 179 : 199 - 207
  • [4] An Experimental Study on the Thermal Runaway Propagation of Cycling Aged Lithium-Ion Battery Modules
    Han, Zhuxin
    Zhao, Luyao
    Zhao, Jiajun
    Xu, Guo
    Liu, Hong
    Chen, Mingyi
    FIRE-SWITZERLAND, 2024, 7 (04):
  • [5] Dynamic thermophysical modeling of thermal runaway propagation and parametric sensitivity analysis for large format lithium-ion battery modules
    Wang, Huaibin
    Liu, Bo
    Xu, Chengshan
    Jin, Changyong
    Li, Kuijie
    Du, Zhiming
    Wang, Qinzheng
    Ouyang, Minggao
    Feng, Xuning
    JOURNAL OF POWER SOURCES, 2022, 520
  • [6] Suppression of lithium-ion battery thermal runaway propagation by zirconia ceramics and aerogel felt in confined space
    Mao, Yikai
    Ye, Yanglin
    Zhao, Luyao
    Chen, Yin
    Chen, Mingyi
    PROCESS SAFETY AND ENVIRONMENTAL PROTECTION, 2024, 189 : 1258 - 1273
  • [7] Synergistic effect of insulation and liquid cooling on mitigating the thermal runaway propagation in lithium-ion battery module
    Rui, Xinyu
    Feng, Xuning
    Wang, Hewu
    Yang, Huiqian
    Zhang, Youqun
    Wan, Mingchun
    Wei, Yaping
    Ouyang, Minggao
    APPLIED THERMAL ENGINEERING, 2021, 199
  • [8] Investigation of thermal runaway propagation characteristics of lithium-ion battery modules under different trigger modes
    Lai, Xin
    Wang, Shuyu
    Wang, Huaibin
    Zheng, Yuejiu
    Feng, Xuning
    INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2021, 171
  • [9] Influence of Aerogel Felt with Different Thickness on Thermal Runaway Propagation of 18650 Lithium-ion Battery
    Liu, Quanyi
    Zhu, Qian
    Zhu, Wentian
    Yi, Xiaoying
    ELECTROCHEMISTRY, 2022, 90 (08)
  • [10] Mitigating thermal runaway propagation for lithium-ion batteries by a novel integrated liquid cooling/aerogel strategies
    Lyu, Peizhao
    Chen, Guohe
    Liu, Xinjian
    Li, Menghan
    Rao, Zhonghao
    APPLIED THERMAL ENGINEERING, 2025, 269