On Sums of Sums Involving the Von Mangoldt Function

被引:1
作者
Kiuchi, Isao [1 ]
Takeda, Wataru [2 ]
机构
[1] Yamaguchi Univ, Dept Math Sci, 1677-1 Yoshida, Yamaguchi, Yamaguchi 7538512, Japan
[2] Toho Univ, Dept Math, 2-2-1 Miyama, Funabashi, Chiba 2748510, Japan
关键词
Asymptotic results on arithmetical functions; von Mangoldt function; riemann zeta-function; exponential sums; anderson-apostol sums;
D O I
10.1007/s00025-024-02276-3
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let Lambda\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Lambda $$\end{document} denote the von Mangoldt function, and (n, q) be the greatest common divisor of positive integers n and q. For any positive real numbers x and y, we shall consider several asymptotic formulas for sums of sums involving the von Mangoldt function; Sk(x,y):=& sum;n <= y & sum;q <= x & sum;d|(n,q)d Lambda qdk\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ S_{k}(x,y):=\sum _{n\le y}\left( \sum _{q\le x}\right. \left. \sum _{d|(n,q)}d\Lambda \left( \frac{q}{d}\right) \right) <^>{k} $$\end{document} for k=1,2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k=1,2$$\end{document}.
引用
收藏
页数:28
相关论文
共 50 条
  • [1] Exponential sums formed with the von Mangoldt function and Fourier coefficients of automorphic forms
    Jiang, Yujiao
    Lu, Guangshi
    MONATSHEFTE FUR MATHEMATIK, 2017, 184 (04): : 539 - 561
  • [2] ON SUMS OF SUMS INVOLVING THE LIOUVILLE FUNCTION
    Kiuchi, Isao
    FUNCTIONES ET APPROXIMATIO COMMENTARII MATHEMATICI, 2024, 70 (02) : 245 - 262
  • [3] ON SUMS INVOLVING THE EULER TOTIENT FUNCTION
    Kiuchi, Isao
    Tsuruta, Yuki
    BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2024, 109 (03) : 486 - 497
  • [4] Exponential sums involving the Mobius function
    He, Xiaoguang
    Huang, Bingrong
    ACTA ARITHMETICA, 2016, 175 (03) : 201 - 209
  • [5] On sums of sums involving cube-full numbers
    Isao Kiuchi
    The Ramanujan Journal, 2022, 59 : 279 - 296
  • [6] On sums of sums involving cube-full numbers
    Kiuchi, Isao
    RAMANUJAN JOURNAL, 2022, 59 (01) : 279 - 296
  • [7] On sums of sums involving squarefull numbers
    Kiuchi, Isao
    ACTA ARITHMETICA, 2021, 200 (02) : 197 - 211
  • [8] On a sum involving the Mangoldt function
    Ma, Jing
    Wu, Jie
    PERIODICA MATHEMATICA HUNGARICA, 2021, 83 (01) : 39 - 48
  • [9] ON FRACTIONAL SUM OF THE VON MANGOLDT FUNCTION
    Lu, Xiaodong
    Xu, Xinyue
    COLLOQUIUM MATHEMATICUM, 2024, : 11 - 19
  • [10] On a sum involving the Mangoldt function
    Jing Ma
    Jie Wu
    Periodica Mathematica Hungarica, 2021, 83 : 39 - 48