MDCNet: Long-term time series forecasting with mode decomposition and 2D convolution

被引:3
|
作者
Su, Jing [1 ]
Xie, Dirui [1 ]
Duan, Yuanzhi [1 ]
Zhou, Yue [1 ,2 ,3 ]
Hu, Xiaofang [1 ,2 ,3 ]
Duan, Shukai [1 ,2 ,3 ]
机构
[1] Southwest Univ, Coll Artificial Intelligence, Chongqing 400715, Peoples R China
[2] Brain inspired Comp & Intelligent Control Chongqin, Chongqing 400715, Peoples R China
[3] Southwest Univ, Key Lab Luminescence Anal & Mol Sensing, Minist Educ, Chongqing, Peoples R China
基金
中国国家自然科学基金;
关键词
Long-term time series forecasting; Mode decomposition; Convolutional neural networks;
D O I
10.1016/j.knosys.2024.111986
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Long-term time series forecasting is widely used in various real -world applications, such as weather, traffic, energy, healthcare, etc. Recently, time series decomposition techniques have been adopted in many mainstream forecasting models, such as the prevalent Transformer -based models, to help capture sophisticated temporal patterns and achieve success in several benchmark tasks. However, conventional decomposition algorithms are often based on simple operations or limited to specific fields, and therefore are not effective and applicable enough, especially for complex time series. In this paper, we propose Mode Decomposition and 2D Convolutional Network (MDCNet), a structure -simple yet effective forecasting architecture based on a more effective decomposition method and a multi -frequency time series feature extraction network with multiscale 2D convolution. Specifically, we first introduce a Variational Mode Decomposition Block to discover intricate time patterns, which decompose time series into trend components and stationary modal components at different main frequencies. Then, we design a Trend Prediction Block and an Intrinsic Mode Functions Prediction Block to capture global correlation and hidden dependencies within different main frequencies, respectively. Furthermore, a Frequency Enhancement Module is designed to further reduce the impact of noise in long-term time series. Experiments on eight benchmark datasets show that MDCNet significantly reduces the error of the previous state-of-the-art method by 15.1% and 11.5% for multivariate and univariate time series, respectively.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] A Long-term Time Series Forecasting method with Multiple Decomposition
    Wang, Yang
    Xhen, Xu
    Wang, Shuyang
    Jing, Yongjun
    35TH INTERNATIONAL CONFERENCE ON SCIENTIFIC AND STATISTICAL DATABASE MANAGEMENT, SSDBM 2023, 2023,
  • [2] Robformer: A robust decomposition transformer for long-term time series forecasting
    Yu, Yang
    Ma, Ruizhe
    Ma, Zongmin
    PATTERN RECOGNITION, 2024, 153
  • [3] Temporal patterns decomposition and Legendre projection for long-term time series forecasting
    Liu, Jianxin
    Ma, Tinghuai
    Su, Yuming
    Rong, Huan
    Khalil, Alaa Abd El-Raouf Mohamed
    Wahab, Mohamed Magdy Abdel
    Osibo, Benjamin Kwapong
    JOURNAL OF SUPERCOMPUTING, 2024, 80 (16): : 23407 - 23441
  • [4] CNformer: a convolutional transformer with decomposition for long-term multivariate time series forecasting
    Wang, Xingyu
    Liu, Hui
    Yang, Zhihan
    Du, Junzhao
    Dong, Xiyao
    APPLIED INTELLIGENCE, 2023, 53 (17) : 20191 - 20205
  • [5] CNformer: a convolutional transformer with decomposition for long-term multivariate time series forecasting
    Xingyu Wang
    Hui Liu
    Zhihan Yang
    Junzhao Du
    Xiyao Dong
    Applied Intelligence, 2023, 53 : 20191 - 20205
  • [6] Multi-scale convolution enhanced transformer for multivariate long-term time series forecasting
    Li, Ao
    Li, Ying
    Xu, Yunyang
    Li, Xuemei
    Zhang, Caiming
    NEURAL NETWORKS, 2024, 180
  • [7] MSDformer: an autocorrelation transformer with multiscale decomposition for long-term multivariate time series forecasting
    Su, Guangyao
    Guan, Yepeng
    APPLIED INTELLIGENCE, 2025, 55 (02)
  • [8] A long-term multivariate time series forecasting network combining series decomposition and convolutional neural networks
    Wang, Xingyu
    Liu, Hui
    Du, Junzhao
    Dong, Xiyao
    Yang, Zhihan
    APPLIED SOFT COMPUTING, 2023, 139
  • [9] xLSTMTime: Long-Term Time Series Forecasting with xLSTM
    Alharthi, Musleh
    Mahmood, Ausif
    AI, 2024, 5 (03) : 1482 - 1495
  • [10] Improving long-term multivariate time series forecasting with a seasonal-trend decomposition-based 2-dimensional temporal convolution dense network
    Hao, Jianhua
    Liu, Fangai
    SCIENTIFIC REPORTS, 2024, 14 (01)