Memory type general class of estimators for population variance under simple random sampling

被引:1
|
作者
Kumar, Anoop [1 ]
Anshika [2 ]
Emam, Walid [3 ]
Tashkandy, Yusra [3 ]
机构
[1] Cent Univ Haryana, Dept Stat, Mahendergarh 123031, Haryana, India
[2] Amity Univ, Dept Stat, Lucknow 226028, India
[3] King Saud Univ, Fac Sci, Dept Stat & Operat Res, POB 2455, Riyadh 11451, Saudi Arabia
关键词
Population variance; Memory-based methods; Simple random sampling; Exponentially weighted moving averages (EWMA); Mean square error (MSE); Efficiency performance;
D O I
10.1016/j.heliyon.2024.e36090
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
With an emphasis on memory-type approaches, this study presents a class of estimators specifically designed for estimating population variation in simple random sampling (SRS). The term 'memory-type' pertaining to the use of exponentially weighted moving averages (EWMA) statistic for the estimation, which utilizes the current and past information in temporal surveys. The study provides expressions for the bias and mean square error (MSE) of these estimators and establishes conditions under which their efficiency represses the conventional and other memory-type estimators. The theoretical findings are reinforced through a comprehensive simulation study conducted on hypothetically sampled populations. Additionally, the effectiveness of the proposed estimators is demonstrated utilizing real-life population data. The findings of simulation and real data application show the superiority of the proposed memory type estimator over the existing usual and memory type estimators.
引用
收藏
页数:10
相关论文
共 50 条
  • [21] A general class of improved population variance estimators under non-sampling errors using calibrated weights in stratified sampling
    Pandey, M. K.
    Singh, G. N.
    Zaman, Tolga
    Al Mutairi, Aned
    Mustafa, Manahil SidAhmed
    SCIENTIFIC REPORTS, 2024, 14 (01):
  • [22] A new efficient class of estimators of finite population mean in simple random sampling
    Pal, Surya K.
    Singh, Housila P.
    Solanki, Ramkrishna S.
    AFRIKA MATEMATIKA, 2020, 31 (3-4) : 595 - 607
  • [23] A new efficient class of estimators of finite population mean in simple random sampling
    Surya K. Pal
    Housila P. Singh
    Ramkrishna S. Solanki
    Afrika Matematika, 2020, 31 : 595 - 607
  • [24] Evaluating the performance of memory type logarithmic estimators using simple random sampling
    Bhushan, Shashi
    Kumar, Anoop
    Alrumayh, Amani
    Khogeer, Hazar A.
    Onyango, Ronald
    PLOS ONE, 2022, 17 (12):
  • [25] Efficient Class of Estimators of Population Variance Under Random Non-response in Two-Phase Successive Sampling
    Sharma, Anup Kumar
    Singh, Garib Nath
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES INDIA SECTION A-PHYSICAL SCIENCES, 2018, 88 (02) : 171 - 180
  • [26] Efficient Class of Estimators of Population Variance Under Random Non-response in Two-Phase Successive Sampling
    Anup Kumar Sharma
    Garib Nath Singh
    Proceedings of the National Academy of Sciences, India Section A: Physical Sciences, 2018, 88 : 171 - 180
  • [27] Separate Ratio Estimators for the Population Variance in Stratified Random Sampling
    Ozel, Gamze
    Cingi, Hulya
    Oguz, Merve
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2014, 43 (22) : 4766 - 4779
  • [28] Improved family of estimators of population coefficient of variation under simple random sampling
    Yadav, Subhash Kumar
    Misra, Sheela
    Gupta, Sat
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2024, 53 (02) : 727 - 747
  • [29] Theoretical Comparisons of Estimators of Finite Population Proportion Under Simple Random Sampling
    Adhya, Sumanta
    Banerjee, Tathagata
    STATISTICS AND APPLICATIONS, 2019, 17 (01): : 53 - 61
  • [30] A Class of Exponential Regression Type Estimators for Population Variance in Two-Phase Sampling
    A. Chatterjee
    G. N. Singh
    A. Bandyopadhyay
    Journal of Statistical Theory and Applications, 2017, 16 (4): : 565 - 575