Fast Subspace-Based Blind and Semi-Blind Channel Estimation for MIMO-OFDM Systems

被引:4
作者
Rekik, Ouahbi [1 ]
Aliyu, Kabiru Nasiru [2 ,3 ]
Tuan, Bui Minh [4 ,5 ]
Abed-Meraim, Karim [6 ]
Trung, Nguyen Linh [4 ]
机构
[1] Higher Sch Signals, Dely Ibrahim 16320, Algeria
[2] King Fahd Univ Petr & Minerals, Dept Elect Engn, Dhahran 31261, Saudi Arabia
[3] King Fahd Univ Petr & Minerals, Ctr Commun Syst & Sensing, Dhahran 31261, Saudi Arabia
[4] Vietnam Natl Univ, Univ Engn & Technol, Adv Inst Engn & Technol AVITECH, Hanoi 100000, Vietnam
[5] Univ Technol Sydney, Fac Engn & Informat Technol, Sch Electr & Data Engn, Ultimo, NSW 2007, Australia
[6] Orleans Univ, PRISME Lab, F-45100 Orleans, France
关键词
Channel estimation; OFDM; Symbols; Estimation; Covariance matrices; Communication systems; Wireless communication; MIMO; subspace method; blind and semi-blind channel estimation; IDENTIFICATION; ALGORITHM;
D O I
10.1109/TWC.2024.3370720
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This paper deals with the problem of blind and semi-blind subspace-based channel estimation, when considering MIMO-OFDM communications systems. The proposed solution offers a reduced computational complexity, mainly by a factor of the number of subcarriers, while guaranteeing accurate channel estimation as compared to state-of-the-art techniques. By exploiting the orthogonality property of the OFDM modulation, covariance matrix and noise subspace are estimated for each subcarrier in a parallel scheme, then a global cost function is minimized to obtain channel coefficients estimates. Besides, conditions for channel identifiability as well as the minimum number of subcarriers to be used for the uniqueness of the solution are investigated with various numerical simulations to corroborate our analysis.
引用
收藏
页码:10247 / 10257
页数:11
相关论文
共 28 条
[1]   A subspace algorithm for certain blind identification problems [J].
AbedMeraim, K ;
Loubaton, P ;
Moulines, E .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1997, 43 (02) :499-511
[2]   Blind SOS subspace channel estimation and equalization techniques exploiting spatial diversity in OFDM systems [J].
Ali, H ;
Doucet, A ;
Hua, YB .
DIGITAL SIGNAL PROCESSING, 2004, 14 (02) :171-202
[3]  
Aliyu Kabiru N., 2023, 2023 31st European Signal Processing Conference (EUSIPCO), P1460, DOI 10.23919/EUSIPCO58844.2023.10289965
[4]   A blind source separation technique using second-order statistics [J].
Belouchrani, A ;
AbedMeraim, K ;
Cardoso, JF ;
Moulines, E .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 1997, 45 (02) :434-444
[5]  
Bouguen F. W. Y., 2013, LTE et les Reseaux 4G
[6]   Low-latency Low-complexity Subspace Methods for mmWave MIMO-OFDM Channel Estimation [J].
Cerutti, Mattia ;
Nicoli, Monica ;
Spagnolini, Umberto .
ICC 2020 - 2020 IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS (ICC), 2020,
[7]  
Cho Y. S., 2010, MIMO-OFDM Wireless Communications With MATLAB, DOI 10.1002/9780470825631
[8]  
Choi K., 2016, MIMO System-Part II: Spatial Multiplexing
[9]  
FORNEY GD, 1975, SIAM J CONTROL, V13, P493, DOI 10.1137/0313029
[10]   Robust subspace blind channel estimation for cyclic prefixed MIMO OFDM systems: Algorithm, identifiability and performance analysis [J].
Gao, Feifei ;
Zeng, Yonghong ;
Nallanathan, Arumugam ;
Ng, Tung-Sang .
IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, 2008, 26 (02) :378-388