Marginal Likelihood Estimation in Semiblind Image Deconvolution: A Stochastic Approximation ApproacH

被引:0
作者
Mbakam, Charlesquin Kemajou [1 ,2 ]
Pereyra, Marcelo [1 ,2 ]
Giovannelli, Jean-Francois [3 ]
机构
[1] Heriot Watt Univ, Maxwell Inst Math Sci, Edinburgh EH14 4AS, Scotland
[2] Heriot Watt Univ, Sch Math & Comp Sci, Edinburgh EH14 4AS, Scotland
[3] Univ Bordeaux 1, CNRS ENSEIRB, Lab Integrat Mat Syst, ENSCPB, 351 cours Liberat, F-33405 Talence, France
来源
SIAM JOURNAL ON IMAGING SCIENCES | 2024年 / 17卷 / 02期
基金
英国工程与自然科学研究理事会;
关键词
image deblurring; semi-blind inverse problems; empirical Bayes; Markov chain Monte Carlo; stochastic approximation proximal gradient optimisation; model selection; EFFICIENT BAYESIAN COMPUTATION; DIMENSIONAL INVERSE PROBLEMS; CHAIN MONTE-CARLO; BLIND DECONVOLUTION; REGULARIZATION PARAMETERS; SIGNAL; RECONSTRUCTION; OPTIMIZATION; ALGORITHM; LANGEVIN;
D O I
10.1137/23M1584496
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper presents a novel stochastic optimization methodology to perform empirical Bayesian inference in semi-blind image deconvolution problems. Given a blurred image and a parametric class of possible operators, the proposed optimization approach automatically calibrates the parameters of the blur model by maximum marginal likelihood estimation, followed by (non-blind) image deconvolution by maximum a posteriori estimation conditionally to the estimated model parameters. In addition to the blur model, the proposed approach also automatically calibrates the noise level as well as any regularization parameters. The marginal likelihood of the blur, noise, and regularization parameters is generally computationally intractable, as it requires calculating several integrals over the entire solution space. Our approach addresses this difficulty by using a stochastic approximation proximal gradient optimization scheme, which iteratively solves such integrals by using a MoreauYosida regularized unadjusted Langevin Markov chain Monte Carlo algorithm. This optimization strategy can be easily and efficiently applied to any model that is log-concave and by using the same gradient and proximal operators that are required to compute the maximum a posteriori solution by convex optimization. We provide convergence guarantees for the proposed optimization scheme under realistic and easily verifiable conditions and subsequently demonstrate the effectiveness of the approach with a series of deconvolution experiments and comparisons with alternative strategies from the state of the art
引用
收藏
页码:1206 / 1254
页数:49
相关论文
共 73 条
[1]  
A. W. VAN DER VAART, 2000, Camb. Ser. Stat. Probab. Math., V3
[2]  
Abdulaziz A, 2021, EUR SIGNAL PR CONF, P1970, DOI 10.23919/EUSIPCO54536.2021.9615995
[3]   Fast Image Recovery Using Variable Splitting and Constrained Optimization [J].
Afonso, Manya V. ;
Bioucas-Dias, Jose M. ;
Figueiredo, Mario A. T. .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2010, 19 (09) :2345-2356
[4]  
Albluwi F, 2018, IEEE INT WORKS MACH
[5]   Parameter Estimation for Blind and Non-Blind Deblurring Using Residual Whiteness Measures [J].
Almeida, Mariana S. C. ;
Figueiredo, Mario A. T. .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2013, 22 (07) :2751-2763
[6]   Blind and Semi-Blind Deblurring of Natural Images [J].
Almeida, Mariana S. C. ;
Almeida, Luis B. .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2010, 19 (01) :36-52
[7]   Variational Bayesian Super Resolution [J].
Babacan, S. Derin ;
Molina, Rafael ;
Katsaggelos, Aggelos K. .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2011, 20 (04) :984-999
[8]   Image deblurring in the presence of impulsive noise [J].
Bar, Leah ;
Kiryati, Nahum ;
Sochen, Nir .
INTERNATIONAL JOURNAL OF COMPUTER VISION, 2006, 70 (03) :279-298
[9]   A Fast Iterative Shrinkage-Thresholding Algorithm for Linear Inverse Problems [J].
Beck, Amir ;
Teboulle, Marc .
SIAM JOURNAL ON IMAGING SCIENCES, 2009, 2 (01) :183-202
[10]   Image restoration methods for the Large Binocular Telescope (LBT) [J].
Bertero, M ;
Boccacci, P .
ASTRONOMY & ASTROPHYSICS SUPPLEMENT SERIES, 2000, 147 (02) :323-333