Improving the accuracy of Anomaly Detection in Multimodal Sensors using 1D-CNN

被引:0
|
作者
Imad, Muhammad [1 ]
Cleland, Ian [1 ]
McAllister, Patrick [1 ]
Nugent, Chris [1 ]
机构
[1] Ulster Univ, Sch Comp, Belfast, North Ireland
关键词
Anomaly Detection; Deep Learning; Multimodal Sensor Data; HAR;
D O I
10.1145/3652037.3652052
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
Unusual sensor data within intelligent built-up environments can indicate a range of concerns, including sensor inaccuracies, susceptibility to security breaches, and alterations in activity and behavioural patterns. This study aims to assess the effectiveness of 1D-CNN in detecting and improving the accuracy of anomalies in multimodal sensor data. This method effectively captures temporal patterns in lengthy data sequences collected over extended periods of time. Through comprehensive experiments utilising a public dataset for smart homes, we have empirically verified, after balancing the dataset, the proposed technique's efficacy, and a high accuracy of 0.96 in predicting anomalies.
引用
收藏
页码:212 / 221
页数:10
相关论文
共 50 条
  • [1] Real-Time Gait Anomaly Detection Using 1D-CNN and LSTM
    Rostovski, Jakob
    Ahmadilivani, Mohammad Hasan
    Krivosei, Andrei
    Kuusik, Alar
    Alam, Muhammad Mahtab
    DIGITAL HEALTH AND WIRELESS SOLUTIONS, PT II, NCDHWS 2024, 2024, 2084 : 260 - 278
  • [2] Bayesian-Based Hyperparameter Optimization of 1D-CNN for Structural Anomaly Detection
    Li, Xiaofei
    Guo, Hainan
    Xu, Langxing
    Xing, Zezheng
    SENSORS, 2023, 23 (11)
  • [3] Classification of Subjects With Balance Disorders Using 1D-CNN and Inertial Sensors
    Napieralski, Jan Andrzej
    Tylman, Wojciech
    Kotas, Rafal
    Marciniak, Pawel
    Kaminski, Marek
    Janc, Magdalena
    Jozefowicz-Korczynska, Magdalena
    Zamyslowska-Szmytke, Ewa
    IEEE ACCESS, 2022, 10 : 127610 - 127619
  • [4] A 1D-CNN Based Deep Learning Technique for Sleep Apnea Detection in IoT Sensors
    John, Arlene
    Cardiff, Barry
    John, Deepu
    2021 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS (ISCAS), 2021,
  • [5] Detection of Corona Faults in Switchgear by Using 1D-CNN, LSTM, and 1D-CNN-LSTM Methods
    Alsumaidaee, Yaseen Ahmed Mohammed
    Yaw, Chong Tak
    Koh, Siaw Paw
    Tiong, Sieh Kiong
    Chen, Chai Phing
    Yusaf, Talal
    Abdalla, Ahmed N.
    Ali, Kharudin
    Raj, Avinash Ashwin
    SENSORS, 2023, 23 (06)
  • [6] Wireless Local Area Networks Threat Detection Using 1D-CNN
    Natkaniec, Marek
    Bednarz, Marcin
    SENSORS, 2023, 23 (12)
  • [7] Research on Abnormal Network Traffic Detection Based on 1D-CNN
    Li, Danyang
    Sun, Ding
    Zeng, Chuan
    2021 INTERNATIONAL CONFERENCE ON NEURAL NETWORKS, INFORMATION AND COMMUNICATION ENGINEERING, 2021, 11933
  • [8] New Method to Diagnosis of Dyslexia Using 1D-CNN
    Ileri, Ramis
    Latifoglu, Fatma
    Demirci, Esra
    2020 MEDICAL TECHNOLOGIES CONGRESS (TIPTEKNO), 2020,
  • [9] Automated delamination detection in concrete bridge decks using 1D-CNN and GPR data
    Elseicy, Ahmed
    Solla, Mercedes
    Lorenzo, Henrique
    CASE STUDIES IN CONSTRUCTION MATERIALS, 2025, 22
  • [10] DETECTION OF DEFORESTATION USING PRISMA HYPERSPECTRAL AND DEEP LEARNING (1D-CNN) IN THE AMAZON FOREST
    Gupta, Rajit
    Ruokolainen, Kalle
    Tuomisto, Hanna
    IGARSS 2024-2024 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, IGARSS 2024, 2024, : 3704 - 3707