Few-shot object detection and attribute recognition from construction site images for improved field compliance

被引:2
作者
Wang, Xiyu [1 ]
El-Gohary, Nora [1 ]
机构
[1] Univ Illinois, Dept Civil & Environm Engn, 205 N Mathews Ave, Urbana, IL 61801 USA
基金
美国国家科学基金会;
关键词
Object detection; Attribute recognition; Deep learning; Few-shot learning; Field compliance checking; Fall protection; Construction safety;
D O I
10.1016/j.autcon.2024.105539
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
Computer vision techniques can be used to detect site objects for identifying noncompliances that could lead to safety incidents. However, existing methods are limited in covering diverse hazard scenarios, detecting site objects with imbalanced distributions, and recognizing their intricate attributes to describe their conditions and functionality. To address these gaps, this paper proposes a deep learning-based method for identifying multiple fall-related objects and their associated attributes. The proposed method consists of three submethods: (1) a method for developing relevant datasets by retrieving images from open resources; (2) a method for few-shot object detection, which deals with imbalanced distributions; and (3) a method for attribute recognition to add semantic descriptions to the detected objects. The proposed method achieved an average precision and recall of 88.2% and 79.5% for few-shot object detection and 94.8% and 95.7% for attribute recognition, respectively, which indicates good performance.
引用
收藏
页数:16
相关论文
共 50 条
  • [1] Few-Shot Object Detection on Remote Sensing Images
    Li, Xiang
    Deng, Jingyu
    Fang, Yi
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
  • [2] A Survey on Recent Advances in Few-Shot Object Detection
    Shi Y.-Y.
    Shi D.-X.
    Qiao Z.-T.
    Zhang Y.
    Liu Y.-Y.
    Yang S.-W.
    Jisuanji Xuebao/Chinese Journal of Computers, 2023, 46 (08): : 1753 - 1780
  • [3] A Closer Look at Few-Shot Object Detection
    Liu, Yuhao
    Dong, Le
    He, Tengyang
    PATTERN RECOGNITION AND COMPUTER VISION, PRCV 2023, PT VIII, 2024, 14432 : 430 - 447
  • [4] Spatial reasoning for few-shot object detection
    Kim, Geonuk
    Jung, Hong-Gyu
    Lee, Seong-Whan
    PATTERN RECOGNITION, 2021, 120
  • [5] Few-Shot Object Detection: A Comprehensive Survey
    Koehler, Mona
    Eisenbach, Markus
    Gross, Horst-Michael
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2024, 35 (09) : 11958 - 11978
  • [6] A comparative attention framework for better few-shot object detection on aerial images
    Le Jeune, Pierre
    Bahaduri, Bissmella
    Mokraoui, Anissa
    PATTERN RECOGNITION, 2025, 161
  • [7] Few shot object detection in remote sensing images
    Zhang, Xingyu
    Zhang, Haopeng
    Jiang, Zhiguo
    IMAGE AND SIGNAL PROCESSING FOR REMOTE SENSING XXVII, 2021, 11862
  • [8] Few-Shot Object Detection of drones
    Zou Weibao
    Liu Xindi
    Yang Jitao
    Qu Wei
    INTERNATIONAL CONFERENCE ON ELECTRICAL, COMPUTER AND ENERGY TECHNOLOGIES (ICECET 2021), 2021, : 1030 - 1034
  • [9] InfRS: Incremental Few-Shot Object Detection in Remote Sensing Images
    Li, Wuzhou
    Zhou, Jiawei
    Li, Xiang
    Cao, Yi
    Jin, Guang
    Zhang, Xuemin
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2024, 62
  • [10] Arbitrary Oriented Few-Shot Object Detection in Remote Sensing Images
    Wu, Wei
    Jiang, Chengeng
    Yang, Liao
    Wang, Weisheng
    Chen, Quanjun
    Zhang, Junjian
    Yang, Haiping
    Chen, Zuohui
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2024, 17 : 17930 - 17944