Voltage and Current Balancing of a Faulty Photovoltaic System Connected to Cascaded H-Bridge Multilevel Inverter

被引:3
作者
Djermouni, Kamel [1 ]
Berboucha, Ali [1 ]
Tamalouzt, Salah [2 ]
Ziane, Djamel [2 ,3 ]
机构
[1] Univ Bejaia, Fac Technol, Lab Maitrise Energies Renouvelables LMER, Bejaia 06000, Algeria
[2] Univ Bejaia, Fac Technol, Lab Technol Ind & Informat LTII, Bejaia 06000, Algeria
[3] Nantes Univ, Inst Rech Energie Elect Nantes Atlantique, IREENA, UR 4642, F-44600 St Nazaire, France
关键词
CONTROL STRATEGY; CONTROL SCHEMES; CONVERTER; PV; OPTIMIZATION; TOPOLOGIES; PWM;
D O I
10.1155/2024/6585584
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
A healthy operation of photovoltaic installations (similar to all electrical systems) is always limited by breakdown, degradation due to aging, or imbalance caused by weather conditions. In this context, producing the maximum energy possible with an acceptable form factor is a significant challenge for autonomous systems, especially those connected to the grid. In this paper, we have two main issues to address. The first is determining the maximum power point of an unbalanced photovoltaic field (due to a defect or nonuniform weather conditions affecting the photovoltaic generators). For such a system, the particle swarm optimization (PSO) algorithm remains highly effective because it can easily handle the existence of multiple maxima simultaneously to provide the best possible solution. The second challenge is managing the imbalance between the three phases of the photovoltaic system. In this context, the results of conducted studies propose two approaches to balance and maximize the power supplied by the photovoltaic generator and converters. In addition, the presence of a battery storage system plays dual roles: firstly, compensating the power fluctuations due to nonuniform operating conditions between phases, and secondly, ensuring system power supply during periods of no sunlight exposure. The proposed approaches take into account the constraints imposed on DC voltages and currents to ensure optimal integration with the multilevel inverter stage (cascaded H-bridge multilevel inverters). This is achieved through selective harmonic elimination control without the need for a filtering system. A comparative study between these two approaches will be conducted to assess their advantages and disadvantages. The battery-based storage system efficiently absorbs excess energy and provides energy during deficits, thanks to a flexible control mechanism that allows easy switching between different battery groups and phases.
引用
收藏
页数:29
相关论文
共 91 条
[1]  
Agarwal N., 2014, INT J ELECT INSTRUME, V4, P16
[2]   A novel self-boosting 5-level inverter for grid-connected photovoltaic system [J].
Agarwal, Ritika ;
Gupta, Krishna Kumar ;
Singh, Shakti .
ELECTRIC POWER SYSTEMS RESEARCH, 2022, 211
[3]   Optimal Harmonic Stepped Waveform Technique for Solar Fed Cascaded Multilevel Inverter [J].
Alexander, S. Albert ;
Thathan, Manigandan .
JOURNAL OF ELECTRICAL ENGINEERING & TECHNOLOGY, 2015, 10 (01) :261-270
[4]   Optimization and Performance Improvement of Grid-Connected PV Plant Based on ANN-PSO and P&O Algorithms [J].
Ali, Abdalftah Hamed ;
Najafi, Atabak .
INTERNATIONAL TRANSACTIONS ON ELECTRICAL ENERGY SYSTEMS, 2022, 2022
[5]   An assessment of recent multilevel inverter topologies with reduced power electronics components for renewable applications [J].
Ali, Jagabar Sathik Mohd ;
Krishnaswamy, Vijayakumar .
RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2018, 82 :3379-3399
[6]   Improved parametric empirical determination of module short circuit current for modelling and optimization of solar photovoltaic systems [J].
Andrews, Rob W. ;
Pollard, Andrew ;
Pearce, Joshua M. .
SOLAR ENERGY, 2012, 86 (09) :2240-2254
[7]   Hybrid Control of Flying Capacitor Converter Based Shunt Active Power Filter for Photovoltaic Systems Interconnection [J].
Aourir, M. ;
Abouloifa, A. ;
Aouadi, C. ;
El Otmani, F. ;
Lachkar, I ;
Noussi, K. ;
Katir, H. .
IFAC PAPERSONLINE, 2022, 55 (12) :49-54
[8]  
Berboucha A., 2017, International Journal of Energetica (IJECA), V2, P15, DOI [10.47238/ijeca.v2i1.15, DOI 10.47238/IJECA.V2I1.15]
[9]  
Berboucha A., 2013, P 1 INT C POW EL THE
[10]  
Berboucha A. K., 2018, Automatica, V66, P17