Monitoring the Behavior of Na Ions and Solid Electrolyte Interphase Formation at an Aluminum/Ionic Liquid Electrode/Electrolyte Interface via Operando Electrochemical X-ray Photoelectron Spectroscopy

被引:1
|
作者
Lee, Roxy [1 ]
Nunney, Tim S. [2 ]
Isaacs, Mark [1 ,3 ]
Palgrave, Robert G. [1 ]
Dey, Avishek [1 ,4 ]
机构
[1] UCL, Dept Chem, London WC1H 0AJ, England
[2] Felbridge Ctr, Unit 1, Thermo Fisher Sci, E Grinstead RH19 1XP, W Sussex, England
[3] Rutherford Appleton Lab, HarwellXPS, Res Complex Harwell, Didcot OX11 0FA, England
[4] Faraday Inst, Quad One, Harwell Sci & Innovat Campus, Didcot OX11 0RA, England
基金
英国工程与自然科学研究理事会;
关键词
XPS; operando; cyclic voltammetry; SEI; sodium ion; ionic liquid; IN-SITU; BATTERIES; SODIUM; XPS;
D O I
10.1021/acsami.4c02241
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
In electrochemical energy storage devices, the interface between the electrode and the electrolyte plays a crucial role. A solid electrolyte interphase (SEI) is formed on the electrode surface due to spontaneous decomposition of the electrolyte, which in turn controls the dynamics of ion migration during charge and discharge cycles. However, the dynamic nature of the SEI means that its chemical structure evolves over time and as a function of the applied bias; thus, a true operando study is extremely valuable. X-ray photoelectron spectroscopy (XPS) is a widely used technique to understand the surface electronic and chemical properties, but the use of ultrahigh vacuum in standard instruments is a major hurdle for their utilization in measuring wet electrochemical processes. Herein, we introduce a 3-electrode electrochemical cell to probe the behavior of Na ions and the formation of SEI at the interface of an ionic liquid (IL) electrolyte and an aluminum electrode under operando conditions. A system containing 0.5 molar NaTFSI dissolved in the IL [BMIM][TFSI] was investigated using an Al working electrode and Pt counter and reference electrodes. By optimizing the scan rate of both XPS and cyclic voltammetry (CV) techniques, we captured the formation and evolution of SEI chemistry using real-time spectra acquisition techniques. A CV scan rate of 2 mVs(-1) was coupled with XPS snapshot spectra collected at 10 s per core level. The technique demonstrated here provides a platform for the chemical analysis of materials beyond batteries.
引用
收藏
页码:35675 / 35685
页数:11
相关论文
共 50 条
  • [21] Localized X-ray photoelectron impedance spectroscopy (LoXPIS) for capturing charge dynamics of an ionic liquid electrolyte within an energy storage device
    Basaran, Mustafa
    Oz, Erdinc
    Ergoktas, Said
    Kocabas, Coskun
    Ulgut, Burak
    Kocabas, Askin
    Suzer, Sefik
    FARADAY DISCUSSIONS, 2022, 236 (00) : 86 - 102
  • [22] In operando X-ray diffraction of lithium-oxygen batteries using an ionic liquid as an electrolyte co-solvent
    Knipping, E.
    Aucher, C.
    Guirado, G.
    Fauth, F.
    Aubouy, L.
    NEW JOURNAL OF CHEMISTRY, 2017, 41 (15) : 7267 - 7272
  • [23] Mechanical Activation of Graphite for Na-Ion Battery Anodes: Unexpected Reversible Reaction on Solid Electrolyte Interphase via X-Ray Analysis
    Lee, Su Chan
    Kim, Young Hwan
    Park, Jae-Ho
    Susanto, Dieky
    Kim, Ji-Young
    Han, Jonghyun
    Jun, Seong Chan
    Chung, Kyung Yoon
    ADVANCED SCIENCE, 2024, 11 (28)
  • [24] Unique Li deposition behavior in Li3PS4 solid electrolyte observed via operando X-ray computed tomography
    Park, Jaehee
    Watanabe, Toshiki
    Yamamoto, Kentaro
    Uchiyama, Tomoki
    Takami, Tsuyoshi
    Sakuda, Atsushi
    Hayashi, Akitoshi
    Tatsumisago, Masahiro
    Uchimoto, Yoshiharu
    CHEMICAL COMMUNICATIONS, 2023, 59 (50) : 7799 - 7802
  • [25] How Bulk Sensitive is Hard X-ray Photoelectron Spectroscopy: Accounting for the Cathode-Electrolyte Interface when Addressing Oxygen Redox
    Lebens-Higgins, Zachary W.
    Chung, Hyeseung
    Zuba, Mateusz J.
    Rana, Jatinkumar
    Li, Yixuan
    Faenza, Nicholas, V
    Pereira, Nathalie
    McCloskey, Bryan D.
    Rodolakis, Fanny
    Yang, Wanli
    Whittingham, M. Stanley
    Amatucci, Glenn G.
    Meng, Ying Shirley
    Lee, Tien-Lin
    Piper, Louis F. J.
    JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2020, 11 (06) : 2106 - 2112
  • [26] The Influence of Water Vapor on the Electrochemical Shift of an Ionic Liquid Measured by Ambient Pressure X-ray Photoelectron Spectroscopy
    Jia, Meng
    Broderick, Alicia
    Newberg, John T.
    CHEMPHYSCHEM, 2021, 22 (07) : 633 - 640
  • [27] Reactivity and Potential Profile across the Electrochemical LiCoO2-Li3PS4 Interface Probed by Operando X-ray Photoelectron Spectroscopy
    Wu, Xiaohan
    Mirolo, Marta
    Vaz, Carlos A. F.
    Novak, Petr
    El Kazzi, Mario
    ACS APPLIED MATERIALS & INTERFACES, 2021, 13 (36) : 42670 - 42681
  • [28] Interrogation of the Interfacial Energetics at a Tantalum Nitride/Electrolyte Heterojunction during Photoelectrochemical Water Splitting by Operando Ambient Pressure X-ray Photoelectron Spectroscopy
    Dahl, Oystein
    Sunding, Martin Fleissner
    Killi, Veronica
    Svenum, Ingeborg-Helene
    Grandcolas, Mathieu
    Andreassen, Magnus
    Nilsen, Ola
    Thogersen, Annett
    Jensen, Ingvild Julie Thue
    Chatzitakis, Athanasios
    ACS CATALYSIS, 2023, 13 (17) : 11762 - 11770
  • [29] Operando Observation of Sulfur Species Poisoning Polymer Electrolyte Fuel Cell Studied by Near Ambient Pressure Hard X-ray Photoelectron Spectroscopy
    Yu, Liwei
    Takagi, Yasumasa
    Nakamura, Takahiro
    Sakata, Tomohiro
    Uruga, Tomoya
    Tada, Mizuki
    Iwasawa, Yasuhiro
    Masaoka, Shigeyuki
    Yokoyama, Toshihiko
    JOURNAL OF PHYSICAL CHEMISTRY C, 2019, 123 (01) : 603 - 611
  • [30] Monitoring potassium metal electrodeposition from an ionic liquid using in situ electrochemical-X-ray photoelectron spectroscopy
    Wibowo, Rahmat
    Aldous, Leigh
    Jacobs, Robert M. J.
    Manan, Ninie S. A.
    Compton, Richard G.
    CHEMICAL PHYSICS LETTERS, 2011, 509 (1-3) : 72 - 76