Monitoring the Behavior of Na Ions and Solid Electrolyte Interphase Formation at an Aluminum/Ionic Liquid Electrode/Electrolyte Interface via Operando Electrochemical X-ray Photoelectron Spectroscopy

被引:1
|
作者
Lee, Roxy [1 ]
Nunney, Tim S. [2 ]
Isaacs, Mark [1 ,3 ]
Palgrave, Robert G. [1 ]
Dey, Avishek [1 ,4 ]
机构
[1] UCL, Dept Chem, London WC1H 0AJ, England
[2] Felbridge Ctr, Unit 1, Thermo Fisher Sci, E Grinstead RH19 1XP, W Sussex, England
[3] Rutherford Appleton Lab, HarwellXPS, Res Complex Harwell, Didcot OX11 0FA, England
[4] Faraday Inst, Quad One, Harwell Sci & Innovat Campus, Didcot OX11 0RA, England
基金
英国工程与自然科学研究理事会;
关键词
XPS; operando; cyclic voltammetry; SEI; sodium ion; ionic liquid; IN-SITU; BATTERIES; SODIUM; XPS;
D O I
10.1021/acsami.4c02241
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
In electrochemical energy storage devices, the interface between the electrode and the electrolyte plays a crucial role. A solid electrolyte interphase (SEI) is formed on the electrode surface due to spontaneous decomposition of the electrolyte, which in turn controls the dynamics of ion migration during charge and discharge cycles. However, the dynamic nature of the SEI means that its chemical structure evolves over time and as a function of the applied bias; thus, a true operando study is extremely valuable. X-ray photoelectron spectroscopy (XPS) is a widely used technique to understand the surface electronic and chemical properties, but the use of ultrahigh vacuum in standard instruments is a major hurdle for their utilization in measuring wet electrochemical processes. Herein, we introduce a 3-electrode electrochemical cell to probe the behavior of Na ions and the formation of SEI at the interface of an ionic liquid (IL) electrolyte and an aluminum electrode under operando conditions. A system containing 0.5 molar NaTFSI dissolved in the IL [BMIM][TFSI] was investigated using an Al working electrode and Pt counter and reference electrodes. By optimizing the scan rate of both XPS and cyclic voltammetry (CV) techniques, we captured the formation and evolution of SEI chemistry using real-time spectra acquisition techniques. A CV scan rate of 2 mVs(-1) was coupled with XPS snapshot spectra collected at 10 s per core level. The technique demonstrated here provides a platform for the chemical analysis of materials beyond batteries.
引用
收藏
页码:35675 / 35685
页数:11
相关论文
共 50 条
  • [1] An X-ray Photoelectron Spectroscopy Primer for Solid Electrolyte Interphase Characterization in Lithium Metal Anodes
    Oyakhire, Solomon T.
    Gong, Huaxin
    Cui, Yi
    Bao, Zhenan
    Bent, Stacey F.
    ACS ENERGY LETTERS, 2022, 7 (08) : 2540 - 2546
  • [2] Role of binders in solid electrolyte interphase formation in lithium ion batteries studied with hard X-ray photoelectron spectroscopy
    Young, Benjamin T.
    Cao Cuong Nguyen
    Lobach, Anton
    Heskett, David R.
    Woicik, Joseph C.
    Lucht, Brett L.
    JOURNAL OF MATERIALS RESEARCH, 2019, 34 (01) : 97 - 106
  • [3] Operando X-ray photoelectron spectroscopy of solid electrolyte interphase formation and evolution in Li2S-P2S5 solid-state electrolytes
    Wood, Kevin N.
    Steirer, K. Xerxes
    Hafner, Simon E.
    Ban, Chunmei
    Santhanagopalan, Shriram
    Lee, Se-Hee
    Teeter, Glenn
    NATURE COMMUNICATIONS, 2018, 9
  • [4] The Buried Carbon/Solid Electrolyte Interphase in Li-ion Batteries Studied by Hard X-ray Photoelectron Spectroscopy
    Hogstrom, Katarzyna Ciosek
    Malmgren, Sara
    Hahlin, Maria
    Gorgoi, Mihaela
    Nyholm, Leif
    Rensmo, Hakan
    Edstrom, Kristina
    ELECTROCHIMICA ACTA, 2014, 138 : 430 - 436
  • [5] X-ray photoelectron spectroscopy as a probe for understanding the potential-dependent impact of fluoroethylene carbonate on the solid electrolyte interface formation in Na/Cu2Sb batteries
    Gimble, Nathan J.
    Kraynak, Leslie A.
    Schneider, Jacob D.
    Schulze, Maxwell C.
    Prieto, Amy L.
    JOURNAL OF POWER SOURCES, 2021, 489
  • [6] Comparing anode and cathode electrode/electrolyte interface composition and morphology using soft and hard X-ray photoelectron spectroscopy
    Malmgren, S.
    Ciosek, K.
    Hahlin, M.
    Gustafsson, T.
    Gorgoi, M.
    Rensmo, H.
    Edstrom, K.
    ELECTROCHIMICA ACTA, 2013, 97 : 23 - 32
  • [7] Development of a new Electrochemical Impedance Spectroscopy Approach for Monitoring the Solid Electrolyte Interphase Formation
    Heins, Tom P.
    Harms, Nina
    Schramm, Linda-Susann
    Schroeder, Uwe
    ENERGY TECHNOLOGY, 2016, 4 (12) : 1509 - 1513
  • [8] Operando X-ray Investigation of Electrode/Electrolyte Interfaces in Model Solid Oxide Fuel Cells
    Volkov, Sergey
    Vonk, Vedran
    Khorshidi, Navid
    Franz, Dirk
    Kubicek, Markus
    Kilic, Volkan
    Felici, Roberto
    Huber, Tobias M.
    Navickas, Edvinas
    Rupp, Ghislain M.
    Fleig, Juergen
    Stierle, Andreas
    CHEMISTRY OF MATERIALS, 2016, 28 (11) : 3727 - 3733
  • [9] Hard X-ray Photoelectron Spectroscopy (HAXPES) Investigation of the Silicon Solid Electrolyte Interphase (SEI) in Lithium-Ion Batteries
    Young, Benjamin T.
    Heskett, David R.
    Nguyen, Cao Cuong
    Nie, Mengyun
    Woicik, Joseph C.
    Lucht, Brett L.
    ACS APPLIED MATERIALS & INTERFACES, 2015, 7 (36) : 20004 - 20011
  • [10] Radiation damage of liquid electrolyte during focused X-ray beam photoelectron spectroscopy
    Arble, Christopher
    Guo, Hongxuan
    Strelcov, Evgheni
    Hoskins, Brian
    Zeller, Patrick
    Amati, Matteo
    Gregoratti, Luca
    Kolmakov, Andrei
    SURFACE SCIENCE, 2020, 697 (697)