Predicting Happiness Index Using Machine Learning

被引:0
作者
Akanbi, Kemi [1 ]
Jones, Yeboah [1 ]
Oluwadare, Sunkanmi [1 ]
Nti, Isaac Kofi [1 ]
机构
[1] Univ Cincinnati, Sch Informat Technol, Cincinnati, OH 45221 USA
来源
2024 IEEE 3RD INTERNATIONAL CONFERENCE ON COMPUTING AND MACHINE INTELLIGENCE, ICMI 2024 | 2024年
关键词
machine learning; happiness index; countries; algorithm;
D O I
10.1109/ICMI60790.2024.10586193
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Happiness in its subjective form is difficult but important to measure. Various happiness indicators are considered when attempting to quantify the level of happiness of countries in the world. The ability to predict the happiness index based on any combination of indicators will provide governments with the understanding for better decision-making. Countries are being ranked based on the happiness perspective of the citizens. This study employed Machine Learning (ML) to predict the happiness score of 156 countries aiming to find the model that performs with close to a hundred percent accuracy, The 2018 and 2019 World Happiness Report was combined, cleaned, and prepared for modeling. Random Forest, XGBoost, and Lasso Regressor were fitted on the dataset utilizing an 80-20 percent split. Performance was evaluated based on R-squared and Mean Square Error. Our study results show that XGBoost performed optimally with a r-squared of 85.03% and MSE of 0.0032. Random Forest achieved 83.68% and 0.0035; Lasso obtained 80.61% and 0.0041 in accuracy.
引用
收藏
页数:5
相关论文
共 50 条
  • [41] Predicting Student Academic Performance Using Machine Learning
    Ojajuni, Opeyemi
    Ayeni, Foluso
    Akodu, Olagunju
    Ekanoye, Femi
    Adewole, Samson
    Ayo, Timothy
    Misra, Sanjay
    Mbarika, Victor
    COMPUTATIONAL SCIENCE AND ITS APPLICATIONS, ICCSA 2021, PT IX, 2021, 12957 : 481 - 491
  • [42] Predicting Plasma Vitamin C Using Machine Learning
    Kirk, Daniel
    Catal, Cagatay
    Tekinerdogan, Bedir
    APPLIED ARTIFICIAL INTELLIGENCE, 2022, 36 (01)
  • [43] Predicting cervical cancer using machine learning methods
    Alsmariy R.
    Healy G.
    Abdelhafez H.
    1600, Science and Information Organization (11): : 173 - 184
  • [44] Predicting Location of Tweets Using Machine Learning Approaches
    Alsaqer, Mohammed
    Alelyani, Salem
    Mohana, Mohamed
    Alreemy, Khalid
    Alqahtani, Ali
    APPLIED SCIENCES-BASEL, 2023, 13 (05):
  • [45] Predicting the Health Status of Cows Using Machine Learning
    Shanta, Sadia Jahan
    Aich, Anik
    Kabir, Foyez Ullah
    Momen, Sifat
    DATA SCIENCE AND ALGORITHMS IN SYSTEMS, 2022, VOL 2, 2023, 597 : 829 - 836
  • [46] Predicting the Use of Managed Lanes Using Machine Learning
    Sruthi Ashraf
    Arezoo Samimi Abianeh
    Farinoush Sharifi
    Vivek Gupta
    Isha Shyam Narsaria
    Mark Burris
    Journal of Big Data Analytics in Transportation, 2021, 3 (3): : 213 - 227
  • [47] Predicting Power Consumption Using Machine Learning Techniques
    Allal, Zaid
    Noura, Hassan
    Salman, Ola
    Vernier, Flavien
    20TH INTERNATIONAL WIRELESS COMMUNICATIONS & MOBILE COMPUTING CONFERENCE, IWCMC 2024, 2024, : 1522 - 1527
  • [48] Predicting Asthma Exacerbations Using Machine Learning Models
    Turcatel, Gianluca
    Xiao, Yi
    Caveney, Scott
    Gnacadja, Gilles
    Kim, Julie
    Molfino, Nestor A.
    ADVANCES IN THERAPY, 2025, 42 (01) : 362 - 374
  • [49] Predicting Comorbid Disorders in ADHD Using Machine Learning
    Faraone, Stephen
    James, Yanli Zhang
    Chen, Qi
    Larsson, Henrik
    BIOLOGICAL PSYCHIATRY, 2019, 85 (10) : S6 - S6
  • [50] Predicting and Classifying Breast Cancer Using Machine Learning
    Alkhathlan, Lina
    Saudagar, Abdul Khader Jilani
    JOURNAL OF COMPUTATIONAL BIOLOGY, 2022, 29 (06) : 497 - 514