MAFT: An Image Super-Resolution Method Based on Mixed Attention and Feature Transfer

被引:0
|
作者
Liu, Xin [1 ]
Li, Jing [1 ]
Cui, Yuanning [2 ]
Zhu, Wei [3 ]
Qian, Luhong [3 ]
机构
[1] Nanjing Univ Aeronaut & Astronaut, Coll Artificial Intelligence, Coll Comp Sci & Technol, Nanjing 211106, Peoples R China
[2] Nanjing Univ, Nanjing 210023, Peoples R China
[3] Kunshan Huaheng Welding Co Ltd, Suzhou 215300, Peoples R China
来源
关键词
Computer vision; Machine learning; Super-resolution; Attention mechanism;
D O I
10.1007/978-3-031-25198-6_39
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Reference-based image super-resolution methods, which enhance the restoration of a low-resolution (LR) images by introducing an additional high-resolution (HR) reference image, have made rapid and remarkable progress in the field of image super-resolution in recent years. Most of the existing methods use an implicit correspondence matching approach to transfer HR features from the reference image (Ref) to the LR image. However, these methods lack the further judgment and processing of the HR features from Ref, which limits them in challenging cases. In this paper, We propose an image super-resolution method based on mixed attention and feature transfer (MAFT). First, we obtain the deep features of the LR and Ref images through the encoder network, then extract the transferred features from Ref through the attention network, and perform adaptive optimization processing on the features, and finally fuse the transferred features with LR features to achieve a high-quality image reconstruction. The quantitative and qualitative experiments on these benchmarks, i.e., CUFED5, Urban100 and Manga109, show that MAFT outperforms the state-of-the-art baselines with significant improvements.
引用
收藏
页码:511 / 519
页数:9
相关论文
共 50 条
  • [1] Image super-resolution method based on attention aggregation hierarchy feature
    Wang, Jianxin
    Zou, Yongsong
    Wu, Honglin
    VISUAL COMPUTER, 2024, 40 (04): : 2655 - 2666
  • [2] Image super-resolution method based on attention aggregation hierarchy feature
    Jianxin Wang
    Yongsong Zou
    Honglin Wu
    The Visual Computer, 2024, 40 : 2655 - 2666
  • [3] Image Super-Resolution Network Based on Feature Fusion Attention
    Zou, Changjun
    Ye, Lintao
    JOURNAL OF SENSORS, 2022, 2022
  • [4] Image super-resolution reconstruction based on feature map attention mechanism
    Yuantao Chen
    Linwu Liu
    Volachith Phonevilay
    Ke Gu
    Runlong Xia
    Jingbo Xie
    Qian Zhang
    Kai Yang
    Applied Intelligence, 2021, 51 : 4367 - 4380
  • [5] Image super-resolution reconstruction based on feature map attention mechanism
    Chen, Yuantao
    Liu, Linwu
    Phonevilay, Volachith
    Gu, Ke
    Xia, Runlong
    Xie, Jingbo
    Zhang, Qian
    Yang, Kai
    APPLIED INTELLIGENCE, 2021, 51 (07) : 4367 - 4380
  • [6] Feature Fusion Attention Network for Image Super-resolution
    Zhou D.-W.
    Ma L.-Y.
    Tian J.-Y.
    Sun X.-X.
    Zidonghua Xuebao/Acta Automatica Sinica, 2022, 48 (09): : 2233 - 2241
  • [7] A Novel Image Super-Resolution Method Based on Attention Mechanism
    Li, Da
    Wang, Yan
    Liu, Dong
    Li, Ruifang
    2020 4TH INTERNATIONAL CONFERENCE ON MACHINE VISION AND INFORMATION TECHNOLOGY (CMVIT 2020), 2020, 1518
  • [8] Cross-resolution feature attention network for image super-resolution
    Liu, Anqi
    Li, Sumei
    Chang, Yongli
    VISUAL COMPUTER, 2023, 39 (09): : 3837 - 3849
  • [9] Cross-resolution feature attention network for image super-resolution
    Anqi Liu
    Sumei Li
    Yongli Chang
    The Visual Computer, 2023, 39 : 3837 - 3849
  • [10] Single image super-resolution based on trainable feature matching attention network
    Chen, Qizhou
    Shao, Qing
    PATTERN RECOGNITION, 2024, 149