MAFT: An Image Super-Resolution Method Based on Mixed Attention and Feature Transfer

被引:0
|
作者
Liu, Xin [1 ]
Li, Jing [1 ]
Cui, Yuanning [2 ]
Zhu, Wei [3 ]
Qian, Luhong [3 ]
机构
[1] Nanjing Univ Aeronaut & Astronaut, Coll Artificial Intelligence, Coll Comp Sci & Technol, Nanjing 211106, Peoples R China
[2] Nanjing Univ, Nanjing 210023, Peoples R China
[3] Kunshan Huaheng Welding Co Ltd, Suzhou 215300, Peoples R China
来源
WEB AND BIG DATA, PT II, APWEB-WAIM 2022 | 2023年 / 13422卷
关键词
Computer vision; Machine learning; Super-resolution; Attention mechanism;
D O I
10.1007/978-3-031-25198-6_39
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Reference-based image super-resolution methods, which enhance the restoration of a low-resolution (LR) images by introducing an additional high-resolution (HR) reference image, have made rapid and remarkable progress in the field of image super-resolution in recent years. Most of the existing methods use an implicit correspondence matching approach to transfer HR features from the reference image (Ref) to the LR image. However, these methods lack the further judgment and processing of the HR features from Ref, which limits them in challenging cases. In this paper, We propose an image super-resolution method based on mixed attention and feature transfer (MAFT). First, we obtain the deep features of the LR and Ref images through the encoder network, then extract the transferred features from Ref through the attention network, and perform adaptive optimization processing on the features, and finally fuse the transferred features with LR features to achieve a high-quality image reconstruction. The quantitative and qualitative experiments on these benchmarks, i.e., CUFED5, Urban100 and Manga109, show that MAFT outperforms the state-of-the-art baselines with significant improvements.
引用
收藏
页码:511 / 519
页数:9
相关论文
共 50 条
  • [1] Image super-resolution method based on attention aggregation hierarchy feature
    Wang, Jianxin
    Zou, Yongsong
    Wu, Honglin
    VISUAL COMPUTER, 2024, 40 (04): : 2655 - 2666
  • [2] Image super-resolution method based on attention aggregation hierarchy feature
    Jianxin Wang
    Yongsong Zou
    Honglin Wu
    The Visual Computer, 2024, 40 : 2655 - 2666
  • [3] Feature Fusion Attention Network for Image Super-resolution
    Zhou D.-W.
    Ma L.-Y.
    Tian J.-Y.
    Sun X.-X.
    Zidonghua Xuebao/Acta Automatica Sinica, 2022, 48 (09): : 2233 - 2241
  • [4] Light Field Image Super-Resolution Based on Feature Interaction Fusion and Attention Mechanism
    Xu, Xinyi
    Deng, Huiping
    Sen, Xiang
    Jin, Wu
    LASER & OPTOELECTRONICS PROGRESS, 2023, 60 (14)
  • [5] Image Super-Resolution Based on Residual Attention and Multi-Scale Feature Fusion
    Kou, Qiqi
    Zhao, Jiamin
    Cheng, Deqiang
    Su, Zhen
    Zhu, Xingguang
    IEEE ACCESS, 2023, 11 : 59530 - 59541
  • [6] Lightweight image super-resolution with feature cheap convolution and attention mechanism
    Xin Yang
    Hengrui Li
    Xiaochuan Li
    Cluster Computing, 2022, 25 : 3977 - 3992
  • [7] Lightweight image super-resolution with feature cheap convolution and attention mechanism
    Yang, Xin
    Li, Hengrui
    Li, Xiaochuan
    CLUSTER COMPUTING-THE JOURNAL OF NETWORKS SOFTWARE TOOLS AND APPLICATIONS, 2022, 25 (06): : 3977 - 3992
  • [8] Cross-resolution feature attention network for image super-resolution
    Liu, Anqi
    Li, Sumei
    Chang, Yongli
    VISUAL COMPUTER, 2023, 39 (09): : 3837 - 3849
  • [9] Cross-resolution feature attention network for image super-resolution
    Anqi Liu
    Sumei Li
    Yongli Chang
    The Visual Computer, 2023, 39 : 3837 - 3849
  • [10] Single image super-resolution based on trainable feature matching attention network
    Chen, Qizhou
    Shao, Qing
    PATTERN RECOGNITION, 2024, 149