Assessing N2O Emissions from Tropical Crop Cultivation in Mineral and Peatland Soils: A Review

被引:0
|
作者
Suwardi [1 ,3 ]
Darmawan [1 ]
Djajakirana, Gunawan [1 ,3 ]
Sumawinata, Basuki [1 ]
Al Viandari, Nourma [2 ]
机构
[1] IPB Univ, Fac Agr, Dept Soil Sci & Land Resources, Bogor, Indonesia
[2] Natl Res & Innovat Agcy BRIN, Res Org Agr & Food, Res Ctr Food Crops, Bogor, Indonesia
[3] IPB Univ, Inst Res & Community Serv, Ctr Mine Reclamat Studies, Bogor, Indonesia
来源
CARAKA TANI-JOURNAL OF SUSTAINABLE AGRICULTURE | 2023年 / 38卷 / 02期
关键词
agricultural land; closed chamber method; N2O 2 O gas emission; peatland soil; tropical mineral soil; NITROUS-OXIDE EMISSIONS; CARBON-DIOXIDE; REDUCED TILLAGE; NITRIFICATION; MANAGEMENT; REDUCTION; FLUXES; CORN; DENITRIFICATION; SYSTEMS;
D O I
10.20961/carakatani.v38i2.75235
中图分类号
S [农业科学];
学科分类号
09 ;
摘要
Nitrous oxide (N2O) 2 O) emissions from agricultural activities contribute significantly to global warming. Understanding the factors influencing N2O 2 O emissions is crucial for developing effective mitigation strategies. This review assesses N2O 2 O emissions from various crops cultivated in tropical mineral and peatland soils, providing insights into the impact of land use, fertilization practices and rainfall on N2O 2 O fluxes. Field measurements of N2O 2 O fluxes were conducted in agricultural fields growing corn, peanuts, and cassava in Bogor Regency, West Java Province, as well as in peatland areas with Acacia plantations and natural primary forests in Bengkalis Regency, Riau Province. The study assesses the total N2O 2 O fluxes for each crop and land type, revealing significant variations in N2O 2 O emissions among different crops and land uses. Peatland areas exhibit higher emissions compared to mineral soils, emphasizing the need for targeted mitigation measures in these ecosystems. The findings highlight the importance of considering the type and age of land use when evaluating N2O 2 O emissions. Land management practices, such as fertilizer use and soil disturbance, emerge as critical factors affecting N2O 2 O emissions. Improper fertilizer application and excessive soil disturbance can lead to increased N2O 2 O emissions, underscoring the necessity for careful N fertilizer management and conservation tillage techniques.
引用
收藏
页码:308 / 326
页数:19
相关论文
共 50 条
  • [41] Estimating N2O emissions from soils under natural vegetation in China
    Xu-Ri
    Wang, Yuesi
    Wang, Yinghong
    Niu, Haishan
    Liu, Yongwen
    Zhuang, Qianlai
    PLANT AND SOIL, 2019, 434 (1-2) : 271 - 287
  • [42] Control of NO3 - and N2O emissions in agroecosystems: A review
    Benckiser, Gero
    Schartel, Tanja
    Weiske, Achim
    AGRONOMY FOR SUSTAINABLE DEVELOPMENT, 2015, 35 (03) : 1059 - 1074
  • [43] Effects of N placement, carbon distribution and temperature on N2O emissions in clay loam and loamy sand soils
    Xue, Y.
    van Es, H. M.
    Schindelbeck, R. R.
    Moebius-Clune, B. N.
    Melkonian, J. J.
    Graham, C.
    Yang, P.
    SOIL USE AND MANAGEMENT, 2013, 29 (02) : 240 - 249
  • [44] Mitigation of N2O emissions from urine treated acidic soils by liming
    Shaaban, Muhammad
    Hu, Ronggui
    Wu, Yupeng
    Younas, Aneela
    Xu, Xiangyu
    Sun, Zheng
    Jiang, Yanbin
    Lin, Shan
    ENVIRONMENTAL POLLUTION, 2019, 255
  • [45] Nitrogen fertilization and liming increased CO2 and N2O emissions from tropical ferralsols, but not from a vertisol
    Ntinyari, Winnie
    Reichel, Ruediger
    Gweyi-Onyango, Joseph P.
    Giweta, Mekonnen
    Wissel, Holger
    Masso, Cargele
    Bol, Roland
    Brueggemann, Nicolas
    SOIL USE AND MANAGEMENT, 2023, 39 (03) : 1125 - 1139
  • [46] N2O and NO emissions by agricultural soils with low hydraulic potentials
    Garrido, F
    Hénault, C
    Gaillard, H
    Pérez, S
    Germon, JC
    SOIL BIOLOGY & BIOCHEMISTRY, 2002, 34 (05) : 559 - 575
  • [47] Earthworms regulate ability of biochar to mitigate CO2 and N2O emissions from a tropical soil
    Namoi, Nictor
    Pelster, David
    Rosenstock, Todd S.
    Mwangi, Lukelysia
    Kamau, Solomon
    Mutuo, Paul
    Barrios, Edmundo
    APPLIED SOIL ECOLOGY, 2019, 140 : 57 - 67
  • [48] The climate change impact on greenhouse gas emissions (CO2 and N2O) from soils at agroecosystems
    Polevoy, Anatoly
    Mykytiuk, Alexander
    Bozhko, Lyudmila
    Barsukova, Elena
    VISNYK OF V N KARAZIN KHARKIV NATIONAL UNIVERSITY-SERIES GEOLOGY GEOGRAPHY ECOLOGY, 2023, (58): : 202 - 216
  • [49] Short-term drought response of N2O and CO2 emissions from mesic agricultural soils in the US Midwest
    Gelfand, Ilya
    Cui, Mengdi
    Tang, Jianwu
    Robertson, G. Philip
    AGRICULTURE ECOSYSTEMS & ENVIRONMENT, 2015, 212 : 127 - 133
  • [50] Hierarchy of factors driving N2O emissions in non-tilled soils under different crops
    Cosentino, V. R. N.
    Figueiro Aureggui, S. A.
    Taboada, M. A.
    EUROPEAN JOURNAL OF SOIL SCIENCE, 2013, 64 (05) : 550 - 557