Context-Encoder-Based Image Inpainting for Ancient Chinese Silk

被引:1
作者
Wang, Quan [1 ,2 ]
He, Shanshan [1 ,2 ]
Su, Miao [1 ,2 ]
Zhao, Feng [1 ,2 ,3 ]
机构
[1] Zhejiang Sci Tech Univ, Int Inst Silk, Coll Text Sci & Engn, Hangzhou 310018, Peoples R China
[2] Int Silk & Silk Rd Res Ctr, Hangzhou 310018, Peoples R China
[3] Zhejiang Univ, Sch Arts & Archaeol, Hangzhou 310018, Peoples R China
来源
APPLIED SCIENCES-BASEL | 2024年 / 14卷 / 15期
关键词
ancient Chinese silk; deep learning; image inpainting; context-encoder-based model; mask awareness;
D O I
10.3390/app14156607
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The rapid advancement of deep learning technologies presents novel opportunities for restoring damaged patterns in ancient silk, which is pivotal for the preservation and propagation of ancient silk culture. This study systematically scrutinizes the evolutionary trajectory of image inpainting algorithms, with a particular emphasis on those firmly rooted in the Context-Encoder structure. To achieve this study's objectives, a meticulously curated dataset comprising 6996 samples of ancient Chinese silk (256 x 256 pixels) was employed. Context-Encoder-based image inpainting models-LISK, MADF, and MEDFE-were employed to inpaint damaged patterns. The ensuing restoration effects underwent rigorous evaluation, providing a comprehensive analysis of the inherent strengths and limitations of each model. This study not only provides a theoretical foundation for adopting image restoration algorithms grounded in the Context-Encoder structure but also offers ample scope for exploration in achieving more effective restorations of ancient damaged silk.
引用
收藏
页数:16
相关论文
共 33 条
[1]   Image inpainting [J].
Bertalmio, M ;
Sapiro, G ;
Caselles, V ;
Ballester, C .
SIGGRAPH 2000 CONFERENCE PROCEEDINGS, 2000, :417-424
[2]   Region filling and object removal by exemplar-based image inpainting [J].
Criminisi, A ;
Pérez, P ;
Toyama, K .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2004, 13 (09) :1200-1212
[3]   Image Style Transfer Using Convolutional Neural Networks [J].
Gatys, Leon A. ;
Ecker, Alexander S. ;
Bethge, Matthias .
2016 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2016, :2414-2423
[4]  
Gong LT, 2024, Arxiv, DOI arXiv:2403.01800
[5]  
Heusel M, 2017, ADV NEUR IN, V30
[6]   Sparse self-attention transformer for image inpainting [J].
Huang, Wenli ;
Deng, Ye ;
Hui, Siqi ;
Wu, Yang ;
Zhou, Sanping ;
Wang, Jinjun .
PATTERN RECOGNITION, 2024, 145
[7]   Perceptual Losses for Real-Time Style Transfer and Super-Resolution [J].
Johnson, Justin ;
Alahi, Alexandre ;
Li Fei-Fei .
COMPUTER VISION - ECCV 2016, PT II, 2016, 9906 :694-711
[8]  
Jolicoeur-Martineau A, 2018, Arxiv, DOI arXiv:1807.00734
[9]  
Liao Liang, 2018, EDGE AWARE CONTEXT E, P3156
[10]   Image Inpainting for Irregular Holes Using Partial Convolutions [J].
Liu, Guilin ;
Reda, Fitsum A. ;
Shih, Kevin J. ;
Wang, Ting-Chun ;
Tao, Andrew ;
Catanzaro, Bryan .
COMPUTER VISION - ECCV 2018, PT XI, 2018, 11215 :89-105