Fault Diagnosis Based on Interpretable Convolutional Temporal-Spatial Attention Network for Offshore Wind Turbines

被引:2
|
作者
Su, Xiangjing [1 ,2 ]
Deng, Chao [1 ]
Shan, Yanhao [3 ]
Shahnia, Farhad [4 ]
Fu, Yang [1 ,2 ]
Dong, Zhaoyang [5 ]
机构
[1] Shanghai Univ Elect Power, Engn Res Ctr Offshore Wind Technol, Minist Educ, Shanghai 200090, Peoples R China
[2] Shanghai Univ Elect Power, Offshore Wind Power Res Inst, Shanghai 200090, Peoples R China
[3] Yantai Power Supply Co, State Grid Shandong Elect Power Co Ltd, Yantai 264001, Peoples R China
[4] Murdoch Univ, Sch Engn & Energy, Perth, WA 6150, Australia
[5] Nanyang Technol Univ, Sch Elect & Elect Engn, Singapore 639798, Singapore
关键词
Feature extraction; Fault diagnosis; Monitoring; Data mining; Wind turbines; Deep learning; Data models; Offshore wind turbine (WT); gearbox; fault diagnosis (FD); attention mechanism; interpretability; temporal-spatial feature; SPATIOTEMPORAL FUSION; NEURAL-NETWORK;
D O I
10.35833/MPCE.2023.000606
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Fault diagnosis (FD) for offshore wind turbines (WTs) are instrumental to their operation and maintenance (O&M). To improve the FD effect in the very early stage, a condition monitoring based sample set mining method from super-visory control and data acquisition (SCADA) time-series data is proposed. Then, based on the convolutional neural network (CNN) and attention mechanism, an interpretable convolutional temporal-spatial attention network (CTSAN) model is proposed. The proposed CTSAN model can extract deep temporal-spatial features from SCADA time-series data sequentially by: <Circled Digit One> a convolution feature extraction module to extract features based on time intervals; <Circled Digit Two> a spatial attention module to extract spatial features considering the weights of different features; and <Circled Digit Three> a temporal attention module to extract temporal features considering the weights of intervals. The proposed CT-SAN model has the superiority of interpretability by exposing the deep temporal-spatial features extracted in a human-understandable form of the temporal-spatial attention weights. The effectiveness and superiority of the proposed CTSAN model are verified by real offshore wind farms in China.
引用
收藏
页码:1459 / 1471
页数:13
相关论文
共 50 条
  • [41] Predictive Condition Monitoring and Fault Diagnosis Techniques for Offshore Wind Turbines
    Zheng Xiaoxia
    Ye Congjie
    Fu Yang
    Li Dongdong
    PROGRESS IN RENEWABLE AND SUSTAINABLE ENERGY, PTS 1 AND 2, 2013, 608-609 : 638 - 643
  • [42] Distributed Attention-Based Temporal Convolutional Network for Remaining Useful Life Prediction
    Song, Yan
    Gao, Shengyao
    Li, Yibin
    Jia, Lei
    Li, Qiqiang
    Pang, Fuzhen
    IEEE INTERNET OF THINGS JOURNAL, 2021, 8 (12): : 9594 - 9602
  • [43] Fault diagnosis strategy of a wind power bearing based on an improved convolutional neural network
    Chang M.
    Shen Y.
    Dianli Xitong Baohu yu Kongzhi/Power System Protection and Control, 2021, 49 (06): : 131 - 137
  • [44] Research on Fault Diagnosis Algorithm Based on Convolutional Neural Network
    Li, Xiaolong
    Wang, Sen
    Zhou, Wei
    Huang, Qi
    Feng, Bowen
    Liu, Lilan
    2019 11TH INTERNATIONAL CONFERENCE ON INTELLIGENT HUMAN-MACHINE SYSTEMS AND CYBERNETICS (IHMSC 2019), VOL 1, 2019, : 8 - 12
  • [45] Capturing spatial-temporal correlations with Attention based Graph Convolutional Network for network traffic prediction
    Guo, Yingya
    Peng, Yufei
    Hao, Run
    Tang, Xiang
    JOURNAL OF NETWORK AND COMPUTER APPLICATIONS, 2023, 220
  • [46] Bearing fault diagnosis of wind turbines based on dynamic multi-adversarial adaptive network
    Miao Tian
    Xiaoming Su
    Changzheng Chen
    Yuanqing Luo
    Xianming Sun
    Journal of Mechanical Science and Technology, 2023, 37 : 1637 - 1651
  • [47] A fault diagnosis based on LSSVM and Bayesian probability for wind turbines
    Zhang, Yuxian
    Yan, Shuqing
    Qian, Xiaoyi
    Zhao, Mengru
    PROCEEDINGS OF THE 39TH CHINESE CONTROL CONFERENCE, 2020, : 4101 - 4106
  • [48] Misalignment Fault Diagnosis for Wind Turbines Based on Information Fusion
    Xiao, Yancai
    Xue, Jinyu
    Zhang, Long
    Wang, Yujia
    Li, Mengdi
    ENTROPY, 2021, 23 (02) : 1 - 20
  • [49] Bearing fault diagnosis of wind turbines based on dynamic multi-adversarial adaptive network
    Tian, Miao
    Su, Xiaoming
    Chen, Changzheng
    Luo, Yuanqing
    Sun, Xianming
    JOURNAL OF MECHANICAL SCIENCE AND TECHNOLOGY, 2023, 37 (04) : 1637 - 1651
  • [50] A review on neurocomputing based wind turbines fault diagnosis and prognosis
    Baltazar, Sergio
    Daniel, Helder
    de Oliveira, Jose Valente
    Li, Chuan
    2018 PROGNOSTICS AND SYSTEM HEALTH MANAGEMENT CONFERENCE (PHM-CHONGQING 2018), 2018, : 437 - 443