Fault Diagnosis Based on Interpretable Convolutional Temporal-Spatial Attention Network for Offshore Wind Turbines

被引:2
|
作者
Su, Xiangjing [1 ,2 ]
Deng, Chao [1 ]
Shan, Yanhao [3 ]
Shahnia, Farhad [4 ]
Fu, Yang [1 ,2 ]
Dong, Zhaoyang [5 ]
机构
[1] Shanghai Univ Elect Power, Engn Res Ctr Offshore Wind Technol, Minist Educ, Shanghai 200090, Peoples R China
[2] Shanghai Univ Elect Power, Offshore Wind Power Res Inst, Shanghai 200090, Peoples R China
[3] Yantai Power Supply Co, State Grid Shandong Elect Power Co Ltd, Yantai 264001, Peoples R China
[4] Murdoch Univ, Sch Engn & Energy, Perth, WA 6150, Australia
[5] Nanyang Technol Univ, Sch Elect & Elect Engn, Singapore 639798, Singapore
关键词
Feature extraction; Fault diagnosis; Monitoring; Data mining; Wind turbines; Deep learning; Data models; Offshore wind turbine (WT); gearbox; fault diagnosis (FD); attention mechanism; interpretability; temporal-spatial feature; SPATIOTEMPORAL FUSION; NEURAL-NETWORK;
D O I
10.35833/MPCE.2023.000606
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Fault diagnosis (FD) for offshore wind turbines (WTs) are instrumental to their operation and maintenance (O&M). To improve the FD effect in the very early stage, a condition monitoring based sample set mining method from super-visory control and data acquisition (SCADA) time-series data is proposed. Then, based on the convolutional neural network (CNN) and attention mechanism, an interpretable convolutional temporal-spatial attention network (CTSAN) model is proposed. The proposed CTSAN model can extract deep temporal-spatial features from SCADA time-series data sequentially by: <Circled Digit One> a convolution feature extraction module to extract features based on time intervals; <Circled Digit Two> a spatial attention module to extract spatial features considering the weights of different features; and <Circled Digit Three> a temporal attention module to extract temporal features considering the weights of intervals. The proposed CT-SAN model has the superiority of interpretability by exposing the deep temporal-spatial features extracted in a human-understandable form of the temporal-spatial attention weights. The effectiveness and superiority of the proposed CTSAN model are verified by real offshore wind farms in China.
引用
收藏
页码:1459 / 1471
页数:13
相关论文
共 50 条
  • [21] AHWCN: An interpretable attention-guided hierarchical wavelet convolutional network for rotating machinery intelligent fault diagnosis
    Zeng, Tao
    Jiang, Hongkai
    Liu, Yunpeng
    Bai, Yan
    EXPERT SYSTEMS WITH APPLICATIONS, 2025, 272
  • [22] MTSF: Multi-Scale Temporal-Spatial Fusion Network for Driver Attention Prediction
    Jin, Lisheng
    Ji, Bingdong
    Guo, Baicang
    Wang, Huanhuan
    Han, Zhuotong
    Liu, Xingchen
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2025, 26 (02) : 1494 - 1509
  • [23] SCCAM: Supervised Contrastive Convolutional Attention Mechanism for Ante-Hoc Interpretable Fault Diagnosis With Limited Fault Samples
    Li, Mengxuan
    Peng, Peng
    Zhang, Jingxin
    Wang, Hongwei
    Shen, Weiming
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2024, 35 (05) : 6194 - 6205
  • [24] Attention-Embedded Quadratic Network (Qttention) for Effective and Interpretable Bearing Fault Diagnosis
    Liao, Jing-Xiao
    Dong, Hang-Cheng
    Sun, Zhi-Qi
    Sun, Jinwei
    Zhang, Shiping
    Fan, Feng-Lei
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2023, 72
  • [25] WPConvNet: An Interpretable Wavelet Packet Kernel-Constrained Convolutional Network for Noise-Robust Fault Diagnosis
    Li, Sinan
    Li, Tianfu
    Sun, Chuang
    Chen, Xuefeng
    Yan, Ruqiang
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2024, 35 (10) : 14974 - 14988
  • [26] Gradient-Based Interpretable Graph Convolutional Network for Bearing Fault Diagnosis
    Wen, Kairu
    Huang, Ruyi
    Li, Dongpeng
    Chen, Zhuyun
    Li, Weihua
    2023 IEEE INTERNATIONAL INSTRUMENTATION AND MEASUREMENT TECHNOLOGY CONFERENCE, I2MTC, 2023,
  • [27] Temporal-spatial coupled model for multi-prediction of tunnel structure: using deep attention-based temporal convolutional network
    Tan, Xuyan
    Chen, Weizhong
    Yang, Jianping
    Tan, Xianjun
    JOURNAL OF CIVIL STRUCTURAL HEALTH MONITORING, 2022, 12 (03) : 675 - 687
  • [28] Fault Diagnosis of Gearbox Based on Refined Topology and Spatio-Temporal Graph Convolutional Network
    Xiang, Wei
    Liu, Shujie
    Li, Hongkun
    Cao, Shunxin
    Zhang, Kongliang
    Yang, Chen
    IEEE SENSORS JOURNAL, 2024, 24 (02) : 1866 - 1879
  • [29] Fault Diagnosis for Wind Turbines Based on ReliefF and eXtreme Gradient Boosting
    Wu, Zidong
    Wang, Xiaoli
    Jiang, Baochen
    APPLIED SCIENCES-BASEL, 2020, 10 (09):
  • [30] Wind Turbine Fault Diagnosis with Generative-Temporal Convolutional Neural Network
    Afrasiabi, Shahabodin
    Afrasiabi, Mousa
    Parang, Benyamin
    Mohammadi, Mohammad
    Arefi, Mohammad Mehdi
    Rastegar, Mohammad
    2019 IEEE INTERNATIONAL CONFERENCE ON ENVIRONMENT AND ELECTRICAL ENGINEERING AND 2019 IEEE INDUSTRIAL AND COMMERCIAL POWER SYSTEMS EUROPE (EEEIC / I&CPS EUROPE), 2019,