A machine learning model for early candidemia prediction in the intensive care unit: Clinical application

被引:0
|
作者
Meng, Qiang [1 ]
Chen, Bowang [1 ]
Xu, Yingyuan [2 ]
Zhang, Qiang [2 ]
Ding, Ranran [1 ]
Ma, Zhen [1 ]
Jin, Zhi [1 ]
Gao, Shuhong [1 ]
Qu, Feng [1 ]
机构
[1] Shandong First Med Univ, Jining Peoples Hosp 1, Jining, Shandong, Peoples R China
[2] Tengzhou Cent Peoples Hosp, Pulm & Crit Care Med, Tengzhou City, Shandong, Peoples R China
来源
PLOS ONE | 2024年 / 19卷 / 09期
关键词
BLOOD-STREAM INFECTION; ARTIFICIAL-INTELLIGENCE; RISK; DIAGNOSIS; GLUCOCORTICOIDS; BACTEREMIA; EFFICACY; SEPSIS; ADULTS;
D O I
10.1371/journal.pone.0309748
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Candidemia often poses a diagnostic challenge due to the lack of specific clinical features, and delayed antifungal therapy can significantly increase mortality rates, particularly in the intensive care unit (ICU). This study aims to develop a machine learning predictive model for early candidemia diagnosis in ICU patients, leveraging their clinical information and findings. We conducted this study with a cohort of 334 patients admitted to the ICU unit at Ji Ning NO.1 people's hospital in China from Jan. 2015 to Dec. 2022. To ensure the model's reliability, we validated this model with an external group consisting of 77 patients from other sources. The candidemia to bacteremia ratio is 1:1. We collected relevant clinical procedures and eighteen key examinations or tests features to support the recursive feature elimination (RFE) algorithm. These features included total bilirubin, age, platelet count, hemoglobin, CVC, lymphocyte, Duration of stay in ICU and so on. To construct the candidemia diagnosis model, we employed random forest (RF) algorithm alongside other machine learning methods and conducted internal and external validation with training and testing sets allocated in a 7:3 ratio. The RF model demonstrated the highest area under the receiver operating characteristic (AUC) with values of 0.87 and 0.83 for internal and external validation, respectively. To evaluate the importance of features in predicting candidemia, Shapley additive explanation (SHAP) values were calculated and results revealed that total bilirubin and age were the most important factors in the prediction model. This advancement in candidemia prediction holds significant promise for early intervention and improved patient outcomes in the ICU setting, where timely diagnosis is of paramount crucial.
引用
收藏
页数:21
相关论文
共 50 条
  • [21] Key Concepts in Machine Learning and Clinical Applications in the Cardiac Intensive Care Unit
    Sarma, Dhruv
    Rali, Aniket S.
    Jentzer, Jacob. C.
    CURRENT CARDIOLOGY REPORTS, 2025, 27 (01)
  • [22] Artificial intelligence and machine learning in intensive care research and clinical application
    Peine, A.
    Lutge, C.
    Poszler, F.
    Celi, L.
    Schoffski, O.
    Marx, G.
    Martin, L.
    ANASTHESIOLOGIE & INTENSIVMEDIZIN, 2020, 61 : 372 - 384
  • [23] Machine Learning Prediction Models for Mortality in Intensive Care Unit Patients with Lactic Acidosis
    Pattharanitima, Pattharawin
    Thongprayoon, Charat
    Kaewput, Wisit
    Qureshi, Fawad
    Qureshi, Fahad
    Petnak, Tananchai
    Srivali, Narat
    Gembillo, Guido
    O'Corragain, Oisin A.
    Chesdachai, Supavit
    Vallabhajosyula, Saraschandra
    Guru, Pramod K.
    Mao, Michael A.
    Garovic, Vesna D.
    Dillon, John J.
    Cheungpasitporn, Wisit
    JOURNAL OF CLINICAL MEDICINE, 2021, 10 (21)
  • [24] Machine Learning for Outcome Prediction in Electroencephalograph (EEG)-Monitored Children in the Intensive Care Unit
    Fernandez, Ivan Sanchez
    Sansevere, Arnold J.
    Gainza-Lein, Marina
    Kapur, Kush
    Loddenkemper, Tobias
    JOURNAL OF CHILD NEUROLOGY, 2018, 33 (08) : 546 - 553
  • [25] Development and validation a nomogram prediction model for early diagnosis of bloodstream infections in the intensive care unit
    Qi, Zhili
    Dong, Lei
    Lin, Jin
    Duan, Meili
    FRONTIERS IN CELLULAR AND INFECTION MICROBIOLOGY, 2024, 14
  • [26] Prediction of COVID-19 Mortality in the Intensive Care Unit Using Machine Learning
    Sakagianni, Aikaterini
    Koufopoulou, Christina
    Verykios, Vassilios
    Loupelis, Evangelos
    Kalles, Dimitrios
    Feretzakis, Georgios
    CARING IS SHARING-EXPLOITING THE VALUE IN DATA FOR HEALTH AND INNOVATION-PROCEEDINGS OF MIE 2023, 2023, 302 : 536 - 540
  • [27] Prediction of candidemia with machine learning techniques: state of the art
    Giacobbe, Daniele Roberto
    Marelli, Cristina
    Mora, Sara
    Cappello, Alice
    Signori, Alessio
    Vena, Antonio
    Guastavino, Sabrina
    Rosso, Nicola
    Campi, Cristina
    Giacomini, Mauro
    Bassetti, Matteo
    FUTURE MICROBIOLOGY, 2024, 19 (10) : 931 - 940
  • [28] Machine Learning-Based Mortality Prediction for Acute Gastrointestinal Bleeding Patients Admitted to Intensive Care Unit
    Liu, Zhou
    Zhang, Liang
    Jiang, Gui-jun
    Chen, Qian-qian
    Hou, Yan-guang
    Wu, Wei
    Malik, Muskaan
    Li, Guang
    Zhan, Li-ying
    CURRENT MEDICAL SCIENCE, 2025, 45 (01) : 70 - 81
  • [29] Machine Learning-Based Mortality Prediction for Acute Gastrointestinal Bleeding Patients Admitted to Intensive Care Unit
    Liu, Zhou
    Zhang, Liang
    Jiang, Gui-jun
    Chen, Qian-qian
    Hou, Yan-guang
    Wu, Wei
    Malik, Muskaan
    Li, Guang
    Zhan, Li-ying
    CURRENT MEDICAL SCIENCE, 2025,
  • [30] Early prediction of sepsis in intensive care patients using the machine learning algorithm NAVOY® Sepsis, a prospective randomized clinical validation study
    Persson, Inger
    Macura, Andreas
    Becedas, David
    Sjovall, Fredrik
    JOURNAL OF CRITICAL CARE, 2024, 80