Artificial intelligence in the detection and treatment of depressive disorders: a narrative review of literature

被引:0
|
作者
Ricci, Fabiana [1 ]
Giallanella, Daniela [1 ]
Gaggiano, Costanza [1 ]
Torales, Julio [2 ,3 ,4 ]
Castaldelli-Maia, Joao Mauricio [5 ,6 ]
Liebrenz, Michael [7 ]
Bener, Abdulbari [8 ,9 ,10 ]
Ventriglio, Antonio [1 ]
机构
[1] Univ Foggia, Dept Clin & Expt Med, Foggia, Italy
[2] Univ Nacl Asuncion, Fac Ciencias Med, Catedra Psicol Med, San Lorenzo, Paraguay
[3] Univ Nacl Caaguazu, Inst Reg Invest Salud, Coronel Oviedo, Paraguay
[4] Univ Sudamericana, Fac Ciencias Med, Pedro Juan Caballero, Paraguay
[5] Fundacao ABC, Med Sch, Dept Neurosci, Santo Andre, Brazil
[6] Univ Sao Paulo, Med Sch, Dept Psychiat, Sao Paulo, Brazil
[7] Univ Bern, Dept Forens Psychiat, Bern, Switzerland
[8] Istanbul Medipol Univ, Medipol Int Sch Med, Dept Publ Hlth, Istanbul, Turkiye
[9] Univ Manchester, Sch Epidemiol & Hlth Sci, Dept Evidence Populat Hlth Unit, Manchester, England
[10] Istanbul Univ Cerrahpasa, Cerrahpasa Med Fac, Dept Biostat & Med Informat, Istanbul, Turkiye
关键词
Artificial intelligence; depression; machine learning; deep learning; natural language processing; MENTAL-HEALTH; CLINICAL DEPRESSION; TREATMENT RESPONSE; OLDER-ADULTS; PREDICTION; FEATURES; SPEECH; CLASSIFICATION; FUTURE; AGENT;
D O I
10.1080/09540261.2024.2384727
中图分类号
R749 [精神病学];
学科分类号
100205 ;
摘要
Modern psychiatry aims to adopt precision models and promote personalized treatment within mental health care. However, the complexity of factors underpinning mental disorders and the variety of expressions of clinical conditions make this task arduous for clinicians. Globally, major depression is a common mental disorder and encompasses a constellation of clinical manifestations and a variety of etiological factors. In this context, the use of Artificial Intelligence might help clinicians in the screening and diagnosis of depression on a wider scale and could also facilitate their task in predicting disease outcomes by considering complex interactions between prodromal and clinical symptoms, neuroimaging data, genetics, or biomarkers. In this narrative review, we report on the most significant evidence from current international literature regarding the use of Artificial Intelligence in the diagnosis and treatment of major depression, specifically focusing on the use of Natural Language Processing, Chatbots, Machine Learning, and Deep Learning.
引用
收藏
页码:39 / 51
页数:13
相关论文
共 50 条
  • [1] Artificial intelligence in food science and nutrition: a narrative review
    Miyazawa, Taiki
    Hiratsuka, Yoichi
    Toda, Masako
    Hatakeyama, Nozomu
    Ozawa, Hitoshi
    Abe, Chizumi
    Cheng, Ting-Yu
    Matsushima, Yuji
    Miyawaki, Yoshifumi
    Ashida, Kinya
    Iimura, Jun
    Tsuda, Tomohiro
    Bushita, Hiroto
    Tomonobu, Kazuichi
    Ohta, Satoshi
    Chung, Hsuan
    Omae, Yusuke
    Yamamoto, Takayuki
    Morinaga, Makoto
    Ochi, Hiroshi
    Nakada, Hajime
    Otsuka, Kazuhiro
    Miyazawa, Teruo
    NUTRITION REVIEWS, 2022, 80 (12) : 2288 - 2300
  • [2] Artificial Intelligence in Orthopedic Radiography Analysis: A Narrative Review
    Chen, Kenneth
    Stotter, Christoph
    Klestil, Thomas
    Nehrer, Stefan
    DIAGNOSTICS, 2022, 12 (09)
  • [3] Artificial Intelligence in Hepatology: A Narrative Review
    Vaz, Karl
    Goodwin, Thomas
    Kemp, William
    Roberts, Stuart
    Majeed, Ammar
    SEMINARS IN LIVER DISEASE, 2021, 41 (04) : 551 - 556
  • [4] Applications of artificial intelligence to improve patient flow on mental health inpatient units - Narrative literature review
    Cecula, Paulina
    Yu, Jiakun
    Dawoodbhoy, Fatema Mustansir
    Delaney, Jack
    Tan, Joseph
    Peacock, Iain
    Cox, Benita
    HELIYON, 2021, 7 (04)
  • [5] Artificial intelligence in perioperative medicine: a narrative review
    Yoon, Hyun-Kyu
    Yang, Hyun-Lim
    Jung, Chul-Woo
    Lee, Hyung-Chul
    KOREAN JOURNAL OF ANESTHESIOLOGY, 2022, 75 (03) : 202 - 215
  • [6] Artificial Intelligence in Symptomatic Carotid Plaque Detection: A Narrative Review
    Miceli, Giuseppe
    Rizzo, Giuliana
    Basso, Maria Grazia
    Cocciola, Elena
    Pennacchio, Andrea Roberta
    Pintus, Chiara
    Tuttolomondo, Antonino
    APPLIED SCIENCES-BASEL, 2023, 13 (07):
  • [7] A Review on the Use of Artificial Intelligence in Fracture Detection
    Bhatnagar, Aayushi
    Kekatpure, Aditya L.
    Velagala, Vivek R.
    Kekatpure, Aashay
    CUREUS JOURNAL OF MEDICAL SCIENCE, 2024, 16 (04)
  • [8] Artificial Intelligence in Cosmetic Dermatology: A Systematic Literature Review
    Vatiwutipong, Pat
    Vachmanus, Sirawich
    Noraset, Thanapon
    Tuarob, Suppawong
    IEEE ACCESS, 2023, 11 : 71407 - 71425
  • [9] Malware Detection with Artificial Intelligence: A Systematic Literature Review
    Gaber, Matthew G.
    Ahmed, Mohiuddin
    Janicke, Helge
    ACM COMPUTING SURVEYS, 2024, 56 (06)
  • [10] Artificial intelligence in fracture detection on radiographs: a literature review
    Lo Mastro, Antonio
    Grassi, Enrico
    Berritto, Daniela
    Russo, Anna
    Reginelli, Alfonso
    Guerra, Egidio
    Grassi, Francesca
    Boccia, Francesco
    JAPANESE JOURNAL OF RADIOLOGY, 2024, : 551 - 585