Artificial intelligence in the detection and treatment of depressive disorders: a narrative review of literature

被引:2
作者
Ricci, Fabiana [1 ]
Giallanella, Daniela [1 ]
Gaggiano, Costanza [1 ]
Torales, Julio [2 ,3 ,4 ]
Castaldelli-Maia, Joao Mauricio [5 ,6 ]
Liebrenz, Michael [7 ]
Bener, Abdulbari [8 ,9 ,10 ]
Ventriglio, Antonio [1 ]
机构
[1] Univ Foggia, Dept Clin & Expt Med, Foggia, Italy
[2] Univ Nacl Asuncion, Fac Ciencias Med, Catedra Psicol Med, San Lorenzo, Paraguay
[3] Univ Nacl Caaguazu, Inst Reg Invest Salud, Coronel Oviedo, Paraguay
[4] Univ Sudamericana, Fac Ciencias Med, Pedro Juan Caballero, Paraguay
[5] Fundacao ABC, Med Sch, Dept Neurosci, Santo Andre, Brazil
[6] Univ Sao Paulo, Med Sch, Dept Psychiat, Sao Paulo, Brazil
[7] Univ Bern, Dept Forens Psychiat, Bern, Switzerland
[8] Istanbul Medipol Univ, Medipol Int Sch Med, Dept Publ Hlth, Istanbul, Turkiye
[9] Univ Manchester, Sch Epidemiol & Hlth Sci, Dept Evidence Populat Hlth Unit, Manchester, England
[10] Istanbul Univ Cerrahpasa, Cerrahpasa Med Fac, Dept Biostat & Med Informat, Istanbul, Turkiye
关键词
Artificial intelligence; depression; machine learning; deep learning; natural language processing; MENTAL-HEALTH; CLINICAL DEPRESSION; TREATMENT RESPONSE; OLDER-ADULTS; PREDICTION; FEATURES; SPEECH; CLASSIFICATION; FUTURE; AGENT;
D O I
10.1080/09540261.2024.2384727
中图分类号
R749 [精神病学];
学科分类号
100205 ;
摘要
Modern psychiatry aims to adopt precision models and promote personalized treatment within mental health care. However, the complexity of factors underpinning mental disorders and the variety of expressions of clinical conditions make this task arduous for clinicians. Globally, major depression is a common mental disorder and encompasses a constellation of clinical manifestations and a variety of etiological factors. In this context, the use of Artificial Intelligence might help clinicians in the screening and diagnosis of depression on a wider scale and could also facilitate their task in predicting disease outcomes by considering complex interactions between prodromal and clinical symptoms, neuroimaging data, genetics, or biomarkers. In this narrative review, we report on the most significant evidence from current international literature regarding the use of Artificial Intelligence in the diagnosis and treatment of major depression, specifically focusing on the use of Natural Language Processing, Chatbots, Machine Learning, and Deep Learning.
引用
收藏
页码:39 / 51
页数:13
相关论文
共 95 条
[1]  
Abdul-Kader SA, 2015, INT J ADV COMPUT SC, V6, P72
[2]  
Abdul-Kaer S.A., 2015, International Journal of Advanced Computer Science and Applications, V6, DOI [10.14569/IJACSA.2015.060712, DOI 10.14569/IJACSA.2015.060712]
[3]   Chatbot features for anxiety and depression: A scoping review [J].
Ahmed, Arfan ;
Hassan, Asmaa ;
Aziz, Sarah ;
Abd-alrazaq, Alaa A. ;
Ali, Nashva ;
Alzubaidi, Mahmood ;
Al-Thani, Dena ;
Elhusein, Bushra ;
Siddig, Mohamed Ali ;
Ahmed, Maram ;
Househ, Mowafa .
HEALTH INFORMATICS JOURNAL, 2023, 29 (01)
[4]   Artificial Intelligence and the Future of Psychiatry [J].
Allen, Summer .
IEEE PULSE, 2020, 11 (03) :2-6
[5]   Machine learning applied to the prediction of relapse, hospitalization, and suicide in bipolar disorder using neuroimaging and clinical data: A systematic review [J].
Amanollahi, Mobina ;
Jameie, Melika ;
Looha, Mehdi Azizmohammad ;
Basti, Fatemeh A. ;
Cattarinussi, Giulia ;
Moghaddam, Hossein Sanjari ;
Di Camillo, Fabio ;
Akhondzadeh, Shahin ;
Pigoni, Alessandro ;
Sambataro, Fabio ;
Brambilla, Paolo ;
Delvecchio, Giuseppe .
JOURNAL OF AFFECTIVE DISORDERS, 2024, 361 :778-797
[6]   Using the NANA toolkit at home to predict older adults' future depression [J].
Andrews, J. A. ;
Harrison, R. F. ;
Brown, L. J. E. ;
MacLean, L. M. ;
Hwang, F. ;
Smith, T. ;
Williams, E. A. ;
Timon, C. ;
Adlam, T. ;
Khadra, H. ;
Astell, A. J. .
JOURNAL OF AFFECTIVE DISORDERS, 2017, 213 :187-190
[7]   Misdiagnosis, detection rate, and associated factors of severe psychiatric disorders in specialized psychiatry centers in Ethiopia [J].
Ayano, Getinet ;
Demelash, Sileshi ;
Yohannes, Zegeye ;
Haile, Kibrom ;
Tulu, Mikiyas ;
Assefa, Dawit ;
Tesfaye, Abel ;
Haile, Kelemua ;
Solomon, Melat ;
Chaka, Asrat ;
Tsegay, Light .
ANNALS OF GENERAL PSYCHIATRY, 2021, 20 (01)
[8]   Epidemiology of Suicide and the Psychiatric Perspective [J].
Bachmann, Silke .
INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH, 2018, 15 (07)
[9]   Prediction of repeated-dose intravenous ketamine response in major depressive disorder using the GWAS-based machine learning approach [J].
Bao, Zhiwei ;
Zhao, Xinyi ;
Li, Jingjing ;
Zhang, Guanghua ;
Wu, Hairong ;
Ning, Yuping ;
Li, Ming D. ;
Yang, Zhongli .
JOURNAL OF PSYCHIATRIC RESEARCH, 2021, 138 :284-290
[10]  
Bendig E., 2022, VERHALTENSTHERAPIE, V32, P64, DOI [DOI 10.1159/000501812, 10.1159/000501812]