The Application of Artificial Intelligence in Atrial Fibrillation Patients: From Detection to Treatment

被引:0
|
作者
Liang, Hanyang [1 ]
Zhang, Han [1 ]
Wang, Juan [1 ]
Shao, Xinghui [1 ]
Wu, Shuang [1 ]
Lyu, Siqi [1 ]
Xu, Wei [1 ]
Wang, Lulu [1 ]
Tan, Jiangshan [1 ]
Wang, Jingyang [1 ]
Yang, Yanmin [1 ]
机构
[1] Chinese Acad Med Sci & Peking Union Med Coll, Natl Ctr Cardiovasc Dis, Natl Clin Res Ctr Cardiovasc Dis, Emergency Ctr,Fuwai Hosp,State Key Lab Cardiovasc, Beijing 100037, Peoples R China
关键词
artificial intelligence; atrial fibrillation; machine learning; deep learning; MOBILE HEALTH TECHNOLOGY; RISK SCORE; PREDICTION; CARE; THROMBOEMBOLISM; RECURRENCE; MANAGEMENT; OUTCOMES; DIGOXIN; IMPACT;
D O I
10.31083/j.rcm2507257
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Atrial fibrillation (AF) is the most prevalent arrhythmia worldwide. Although the guidelines for AF have been updated in recent years, its gradual onset and associated risk of stroke pose challenges for both patients and cardiologists in real-world practice. Artificial intelligence (AI) is a powerful tool in image analysis, data processing, and for establishing models. It has been widely applied in various medical fields, including AF. In this review, we focus on the progress and knowledge gap regarding the use of AI in AF patients and highlight its potential throughout the entire cycle of AF management, from detection to drug treatment. More evidence is needed to demonstrate its ability to improve prognosis through high-quality randomized controlled trials.
引用
收藏
页数:13
相关论文
共 50 条
  • [41] Evaluation of Atrial Fibrillation Detection in Short-Term Photoplethysmography (PPG) Signals Using Artificial Intelligence
    Talukdar, Debjyoti
    De Deus, Luis Felipe
    Sehgal, Nikhil
    CUREUS JOURNAL OF MEDICAL SCIENCE, 2023, 15 (09)
  • [42] Application of Artificial Intelligence and Remote Sensing for Landslide Detection and Prediction: Systematic Review
    Akosah, Stephen
    Gratchev, Ivan
    Kim, Dong-Hyun
    Ohn, Syng-Yup
    REMOTE SENSING, 2024, 16 (16)
  • [43] Artificial Intelligence in Drug Treatment
    Romm, Eden L.
    Tsigelny, Igor F.
    ANNUAL REVIEW OF PHARMACOLOGY AND TOXICOLOGY, VOL 60, 2020, 60 : 353 - 369
  • [44] Diagnostic accuracy and performance of artificial intelligence in measuring left atrial volumes and function on multiphasic CT in patients with atrial fibrillation
    Gilberto J. Aquino
    Jordan Chamberlin
    Basel Yacoub
    Madison R. Kocher
    Ismail Kabakus
    Selcuk Akkaya
    Megan Mercer
    Jeffrey Waltz
    Matthew Fiegel
    Nathan Leaphart
    Athira Jacob
    Mehmet Akif Gulsun
    James Gilkes
    Joe Stephenson
    Puneet Sharma
    Pooyan Sahbaee
    Joseph Schoepf
    Stefan Zimmerman
    Michael E. Field
    Ali M. Agha
    Jeremy R. Burt
    European Radiology, 2022, 32 : 5256 - 5264
  • [45] Hospitalizations in patients with atrial fibrillation: an analysis from ROCKET AF
    DeVore, Adam D.
    Hellkamp, Anne S.
    Becker, Richard C.
    Berkowitz, Scott D.
    Breithardt, Guenter
    Hacke, Werner
    Halperin, Jonathan L.
    Hankey, Graeme J.
    Mahaffey, Kenneth W.
    Nessel, Christopher C.
    Singer, Daniel E.
    Fox, Keith A. A.
    Patel, Manesh R.
    Piccini, Jonathan P.
    EUROPACE, 2016, 18 (08): : 1135 - 1142
  • [46] Epicardial and endocardial electrophysiological guided thoracoscopic surgery for atrial fibrillation: A multidisciplinary approach of atrial fibrillation ablation in challenging patients
    Krul, Sebastien P. J.
    Pison, Laurent
    La Meir, Mark
    Driessen, Antoine H. G.
    Wilde, Arthur A. M.
    Maessen, Jos G.
    De Mol, Bas A. J. M.
    Crijns, Harry J. G. M.
    de Groot, Joris R.
    INTERNATIONAL JOURNAL OF CARDIOLOGY, 2014, 173 (02) : 229 - 235
  • [47] Prediction of Atrial Fibrillation using artificial intelligence on Electrocardiograms: A systematic review
    Matias, Igor
    Garcia, Nuno
    Pirbhulal, Sandeep
    Felizardo, Virginie
    Pombo, Nuno
    Zacarias, Henriques
    Sousa, Miguel
    Zdravevski, Eftim
    COMPUTER SCIENCE REVIEW, 2021, 39
  • [48] Detecting Atrial Fibrillation by Artificial Intelligence-Enabled Neuroimaging Examination
    Sharobeam, Angelos
    Shokri, Mohammad Javad
    Desai, Nandakishor
    Rao, Aravinda S.
    Kusuma, Yohanna
    Palaniswami, Marimuthu
    Davis, Stephen M.
    Yan, Bernard
    CEREBROVASCULAR DISEASES, 2025,
  • [49] Coronary Microvascular Dysfunction and the Risk of Atrial Fibrillation From an Artificial Intelligence-Enabled Electrocardiogram
    Ahmad, Ali
    Corban, Michel T.
    Toya, Takumi
    Attia, Zachi I.
    Noseworthy, Peter A.
    Lopez-Jimenez, Francisco
    Cohen, Michal Shelly
    Sara, Jaskanwal D.
    Ozcan, Ilke
    Lerman, Lilach O.
    Kapa, Suraj
    Friedman, Paul A.
    Lerman, Amir
    CIRCULATION-ARRHYTHMIA AND ELECTROPHYSIOLOGY, 2021, 14 (08)
  • [50] Diagnostic accuracy and performance of artificial intelligence in measuring left atrial volumes and function on multiphasic CT in patients with atrial fibrillation
    Aquino, Gilberto J.
    Chamberlin, Jordan
    Yacoub, Basel
    Kocher, Madison R.
    Kabakus, Ismail
    Akkaya, Selcuk
    Mercer, Megan
    Waltz, Jeffrey
    Fiegel, Matthew
    Leaphart, Nathan
    Jacob, Athira
    Gulsun, Mehmet Akif
    Gilkes, James
    Stephenson, Joe
    Sharma, Puneet
    Sahbaee, Pooyan
    Schoepf, Joseph
    Zimmerman, Stefan
    Field, Michael E.
    Agha, Ali M.
    Burt, Jeremy R.
    EUROPEAN RADIOLOGY, 2022, 32 (08) : 5256 - 5264