A comparative study on nanoscale mechanical properties of CrMnFeCoNi high-entropy alloys fabricated by casting and additive manufacturing

被引:1
作者
Liu, Siqi [1 ]
Wan, Di [2 ]
Guan, Shuai [3 ]
Fu, Yuequn [4 ]
Zhang, Zhiliang [1 ]
He, Jianying [1 ]
机构
[1] Norwegian Univ Sci & Technol NTNU, Dept Struct Engn, NTNU Nanomech Lab, N-7491 Trondheim, Norway
[2] Beijing Inst Technol, Adv Res Inst Multidisciplinary Sci, Zhongguancun South St 5, Beijing 100081, Peoples R China
[3] Univ Massachusetts, Dept Mech & Ind Engn, Amherst, MA 01002 USA
[4] Univ Oslo, Njord Ctr, Dept Phys, PoreLab, N-0316 Oslo, Norway
来源
JOURNAL OF MATERIALS RESEARCH AND TECHNOLOGY-JMR&T | 2024年 / 33卷
基金
中国国家自然科学基金;
关键词
High-entropy alloys; Additive manufacturing; Nanoindentation; Indentation size effect; Yield strength; Fracture toughness; Strain rate sensitivity; STRAIN-RATE SENSITIVITY; FRACTURE-TOUGHNESS; INSTRUMENTED INDENTATION; ENHANCED STRENGTH; CRACK-PROPAGATION; ELASTIC-MODULUS; NANOINDENTATION; MICROSTRUCTURE; PLASTICITY; DEFORMATION;
D O I
10.1016/j.jmrt.2024.09.146
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Additive manufacturing (AM) has emerged as a pioneering method for fabricating high entropy alloys (HEAs), yet a comprehensive comparison of their nanoscale mechanical properties with those produced by the conventional casting method remains unexplored. In this study, the nanoindentation was utilized to investigate the nanoscale elastic and plastic characteristics in both additive-manufactured (AM-ed) and as-casted single-phase face-centered cubic (FCC) equiatomic CrMnFeCoNi HEAs. Herein, the hardness, reduced modulus, indentation size effect (ISE), yield strength, fracture toughness, and strain rate sensitivity were comprehensively investigated. The results indicated that the hardness of AM-ed HEA was higher than the as-casted HEA, and the reduced modulus values showed no notable distinction between the two samples. The AM-ed HEA demonstrated simultaneous enhancements in yield strength and fracture toughness compared to the as-casted HEA. The ascasted HEA possessed a more distinct indentation size effect (ISE) than the AM-ed HEA. It was observed that the AM-ed HEA exhibited relatively lower strain rate sensitivity and a larger activation volume. This direct comparison of the mechanical properties and deformation mechanisms from a nanoscale view offers unique insights for optimizing and advancing AM techniques in the fabrication of HEAs.
引用
收藏
页码:1211 / 1219
页数:9
相关论文
共 71 条
  • [1] Distinct origins of deformation twinning in an additively-manufactured high-entropy alloy
    Bajaj, D.
    Chen, Z.
    Qu, S. J.
    Feng, A. H.
    Li, D. Y.
    Chen, D. L.
    [J]. ADDITIVE MANUFACTURING, 2023, 74
  • [2] Size effects on plasticity in high-entropy alloys
    Basu, Indranil
    Ocelik, Vaclav
    De Hosson, Jeff Th. M.
    [J]. JOURNAL OF MATERIALS RESEARCH, 2018, 33 (19) : 3055 - 3076
  • [3] Fracture and fatigue in additively manufactured metals
    Becker, Thorsten Hermann
    Kumar, Punit
    Ramamurty, Upadrasta
    [J]. ACTA MATERIALIA, 2021, 219
  • [4] The use of high-entropy alloys in additive manufacturing
    Brif, Yevgeni
    Thomas, Meurig
    Todd, Iain
    [J]. SCRIPTA MATERIALIA, 2015, 99 : 93 - 96
  • [5] Crack propagation and fracture toughness of Ti6A14V alloy produced by selective laser melting
    Cain, V
    Thijs, L.
    Van Humbeeck, J.
    Van Hooreweder, B.
    Knutsen, R.
    [J]. ADDITIVE MANUFACTURING, 2015, 5 : 68 - 76
  • [6] Multicomponent high-entropy Cantor alloys
    Cantor, B.
    [J]. PROGRESS IN MATERIALS SCIENCE, 2021, 120
  • [7] Microstructural development in equiatomic multicomponent alloys
    Cantor, B
    Chang, ITH
    Knight, P
    Vincent, AJB
    [J]. MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2004, 375 : 213 - 218
  • [8] Dynamic deformation behaviors and mechanisms of CoCrFeNi high-entropy alloys
    Cao, Tangqing
    Zhang, Qian
    Wang, Liang
    Wang, Lu
    Xiao, Yao
    Yao, Jiahao
    Liu, Huaiyi
    Ren, Yang
    Liang, Jun
    Xue, Yunfei
    Li, Xiaoyan
    [J]. ACTA MATERIALIA, 2023, 260
  • [9] Additive Manufacturing of High-Entropy Alloys: A Review
    Chen, Shuying
    Tong, Yang
    Liaw, Peter K.
    [J]. ENTROPY, 2018, 20 (12)
  • [10] Microstructure and enhanced strength of laser aided additive manufactured CoCrFeNiMn high entropy alloy
    Chew, Y.
    Bi, G. J.
    Zhu, Z. G.
    Ng, F. L.
    Weng, F.
    Liu, S. B.
    Nai, S. M. L.
    Lee, B. Y.
    [J]. MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2019, 744 : 137 - 144